Skip to content

Commit

Permalink
Use Symbol for uplo in Bidiagonal constructors (#22703)
Browse files Browse the repository at this point in the history
- Consistent with Symmetric/Hermitian wrappers
- It is clearer to use :U/:L instead of true/false
- The Char constructor was originally for internal use only; remove and remove docstring
  • Loading branch information
fredrikekre authored and andreasnoack committed Jul 10, 2017
1 parent 987d365 commit ff781e5
Show file tree
Hide file tree
Showing 18 changed files with 171 additions and 225 deletions.
3 changes: 3 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -148,6 +148,9 @@ Deprecated or removed

* `read(::IO, ::Ref)` is now a method of `read!`, since it mutates its `Ref` argument ([#21592]).

* `Bidiagonal` constructors now use a `Symbol` (`:U` or `:L`) for the upper/lower
argument, instead of a `Bool` or a `Char` ([#22703]).


Julia v0.6.0 Release Notes
==========================
Expand Down
5 changes: 5 additions & 0 deletions base/deprecated.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1555,6 +1555,11 @@ function CartesianRange{N}(start::CartesianIndex{N}, stop::CartesianIndex{N})
CartesianRange(inds)
end

# PR #22703
@deprecate Bidiagonal(dv::AbstractVector, ev::AbstractVector, isupper::Bool) Bidiagonal(dv, ev, ifelse(isupper, :U, :L))
@deprecate Bidiagonal(dv::AbstractVector, ev::AbstractVector, uplo::Char) Bidiagonal(dv, ev, ifelse(uplo == 'U', :U, :L))
@deprecate Bidiagonal(A::AbstractMatrix, isupper::Bool) Bidiagonal(A, ifelse(isupper, :U, :L))

# END 0.7 deprecations

# BEGIN 1.0 deprecations
Expand Down
187 changes: 70 additions & 117 deletions base/linalg/bidiag.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,121 +4,74 @@
mutable struct Bidiagonal{T} <: AbstractMatrix{T}
dv::Vector{T} # diagonal
ev::Vector{T} # sub/super diagonal
isupper::Bool # is upper bidiagonal (true) or lower (false)
function Bidiagonal{T}(dv::Vector{T}, ev::Vector{T}, isupper::Bool) where T
uplo::Char # upper bidiagonal ('U') or lower ('L')
function Bidiagonal{T}(dv::Vector{T}, ev::Vector{T}, uplo::Char) where T
if length(ev) != length(dv)-1
throw(DimensionMismatch("length of diagonal vector is $(length(dv)), length of off-diagonal vector is $(length(ev))"))
end
new(dv, ev, isupper)
new(dv, ev, uplo)
end
function Bidiagonal(dv::Vector{T}, ev::Vector{T}, uplo::Char) where T
Bidiagonal{T}(dv, ev, uplo)
end
end

"""
Bidiagonal(dv, ev, isupper::Bool)
Bidiagonal(dv, ev, uplo::Symbol)
Constructs an upper (`isupper=true`) or lower (`isupper=false`) bidiagonal matrix using the
given diagonal (`dv`) and off-diagonal (`ev`) vectors. The result is of type `Bidiagonal`
Constructs an upper (`uplo=:U`) or lower (`uplo=:L`) bidiagonal matrix using the
given diagonal (`dv`) and off-diagonal (`ev`) vectors. The result is of type `Bidiagonal`
and provides efficient specialized linear solvers, but may be converted into a regular
matrix with [`convert(Array, _)`](@ref) (or `Array(_)` for short). `ev`'s length
matrix with [`convert(Array, _)`](@ref) (or `Array(_)` for short). The length of `ev`
must be one less than the length of `dv`.
# Example
# Examples
```jldoctest
julia> dv = [1; 2; 3; 4]
julia> dv = [1, 2, 3, 4]
4-element Array{Int64,1}:
1
2
3
4
julia> ev = [7; 8; 9]
julia> ev = [7, 8, 9]
3-element Array{Int64,1}:
7
8
9
julia> Bu = Bidiagonal(dv, ev, true) # ev is on the first superdiagonal
julia> Bu = Bidiagonal(dv, ev, :U) # ev is on the first superdiagonal
4×4 Bidiagonal{Int64}:
1 7 ⋅ ⋅
⋅ 2 8 ⋅
⋅ ⋅ 3 9
⋅ ⋅ ⋅ 4
julia> Bl = Bidiagonal(dv, ev, false) # ev is on the first subdiagonal
julia> Bl = Bidiagonal(dv, ev, :L) # ev is on the first subdiagonal
4×4 Bidiagonal{Int64}:
1 ⋅ ⋅ ⋅
7 2 ⋅ ⋅
⋅ 8 3 ⋅
⋅ ⋅ 9 4
```
"""
Bidiagonal(dv::AbstractVector{T}, ev::AbstractVector{T}, isupper::Bool) where {T} = Bidiagonal{T}(collect(dv), collect(ev), isupper)
function Bidiagonal(dv::AbstractVector{T}, ev::AbstractVector{T}, uplo::Symbol) where T
Bidiagonal{T}(collect(dv), collect(ev), char_uplo(uplo))
end
Bidiagonal(dv::AbstractVector, ev::AbstractVector) = throw(ArgumentError("did you want an upper or lower Bidiagonal? Try again with an additional true (upper) or false (lower) argument."))

"""
Bidiagonal(dv, ev, uplo::Char)
Constructs an upper (`uplo='U'`) or lower (`uplo='L'`) bidiagonal matrix using the
given diagonal (`dv`) and off-diagonal (`ev`) vectors. The result is of type `Bidiagonal`
and provides efficient specialized linear solvers, but may be converted into a regular
matrix with [`convert(Array, _)`](@ref) (or `Array(_)` for short). `ev`'s
length must be one less than the length of `dv`.
# Example
```jldoctest
julia> dv = [1; 2; 3; 4]
4-element Array{Int64,1}:
1
2
3
4
julia> ev = [7; 8; 9]
3-element Array{Int64,1}:
7
8
9
julia> Bu = Bidiagonal(dv, ev, 'U') #e is on the first superdiagonal
4×4 Bidiagonal{Int64}:
1 7 ⋅ ⋅
⋅ 2 8 ⋅
⋅ ⋅ 3 9
⋅ ⋅ ⋅ 4
julia> Bl = Bidiagonal(dv, ev, 'L') #e is on the first subdiagonal
4×4 Bidiagonal{Int64}:
1 ⋅ ⋅ ⋅
7 2 ⋅ ⋅
⋅ 8 3 ⋅
⋅ ⋅ 9 4
```
"""
#Convert from BLAS uplo flag to boolean internal
function Bidiagonal(dv::AbstractVector, ev::AbstractVector, uplo::Char)
if uplo === 'U'
isupper = true
elseif uplo === 'L'
isupper = false
else
throw(ArgumentError("Bidiagonal uplo argument must be upper 'U' or lower 'L', got $(repr(uplo))"))
end
Bidiagonal(collect(dv), collect(ev), isupper)
end
function Bidiagonal(dv::AbstractVector{Td}, ev::AbstractVector{Te}, isupper::Bool) where {Td,Te}
function Bidiagonal(dv::AbstractVector{Td}, ev::AbstractVector{Te}, uplo::Symbol) where {Td,Te}
T = promote_type(Td,Te)
Bidiagonal(convert(Vector{T}, dv), convert(Vector{T}, ev), isupper)
Bidiagonal(convert(Vector{T}, dv), convert(Vector{T}, ev), uplo)
end

"""
Bidiagonal(A, isupper::Bool)
Bidiagonal(A, uplo::Symbol)
Construct a `Bidiagonal` matrix from the main diagonal of `A` and
its first super- (if `isupper=true`) or sub-diagonal (if `isupper=false`).
# Example
its first super- (if `uplo=:U`) or sub-diagonal (if `uplo=:L`).
# Examples
```jldoctest
julia> A = [1 1 1 1; 2 2 2 2; 3 3 3 3; 4 4 4 4]
4×4 Array{Int64,2}:
Expand All @@ -127,22 +80,22 @@ julia> A = [1 1 1 1; 2 2 2 2; 3 3 3 3; 4 4 4 4]
3 3 3 3
4 4 4 4
julia> Bidiagonal(A, true) #contains the main diagonal and first superdiagonal of A
julia> Bidiagonal(A, :U) #contains the main diagonal and first superdiagonal of A
4×4 Bidiagonal{Int64}:
1 1 ⋅ ⋅
⋅ 2 2 ⋅
⋅ ⋅ 3 3
⋅ ⋅ ⋅ 4
julia> Bidiagonal(A, false) #contains the main diagonal and first subdiagonal of A
julia> Bidiagonal(A, :L) #contains the main diagonal and first subdiagonal of A
4×4 Bidiagonal{Int64}:
1 ⋅ ⋅ ⋅
2 2 ⋅ ⋅
⋅ 3 3 ⋅
⋅ ⋅ 4 4
```
"""
Bidiagonal(A::AbstractMatrix, isupper::Bool)=Bidiagonal(diag(A), diag(A, isupper ? 1 : -1), isupper)
Bidiagonal(A::AbstractMatrix, uplo::Symbol) = Bidiagonal(diag(A), diag(A, uplo == :U ? 1 : -1), uplo)

function getindex(A::Bidiagonal{T}, i::Integer, j::Integer) where T
if !((1 <= i <= size(A,2)) && (1 <= j <= size(A,2)))
Expand Down Expand Up @@ -174,7 +127,7 @@ end

## structured matrix methods ##
function Base.replace_in_print_matrix(A::Bidiagonal,i::Integer,j::Integer,s::AbstractString)
if A.isupper
if A.uplo == 'U'
i==j || i==j-1 ? s : Base.replace_with_centered_mark(s)
else
i==j || i==j+1 ? s : Base.replace_with_centered_mark(s)
Expand All @@ -187,7 +140,7 @@ function convert(::Type{Matrix{T}}, A::Bidiagonal) where T
B = zeros(T, n, n)
for i = 1:n - 1
B[i,i] = A.dv[i]
if A.isupper
if A.uplo == 'U'
B[i, i + 1] = A.ev[i]
else
B[i + 1, i] = A.ev[i]
Expand All @@ -205,29 +158,29 @@ promote_rule(::Type{Matrix{T}}, ::Type{Bidiagonal{S}}) where {T,S} = Matrix{prom
Tridiagonal(M::Bidiagonal{T}) where {T} = convert(Tridiagonal{T}, M)
function convert(::Type{Tridiagonal{T}}, A::Bidiagonal) where T
z = zeros(T, size(A)[1]-1)
A.isupper ? Tridiagonal(z, convert(Vector{T},A.dv), convert(Vector{T},A.ev)) : Tridiagonal(convert(Vector{T},A.ev), convert(Vector{T},A.dv), z)
A.uplo == 'U' ? Tridiagonal(z, convert(Vector{T},A.dv), convert(Vector{T},A.ev)) : Tridiagonal(convert(Vector{T},A.ev), convert(Vector{T},A.dv), z)
end
promote_rule(::Type{Tridiagonal{T}}, ::Type{Bidiagonal{S}}) where {T,S} = Tridiagonal{promote_type(T,S)}

# No-op for trivial conversion Bidiagonal{T} -> Bidiagonal{T}
convert(::Type{Bidiagonal{T}}, A::Bidiagonal{T}) where {T} = A
# Convert Bidiagonal to Bidiagonal{T} by constructing a new instance with converted elements
convert(::Type{Bidiagonal{T}}, A::Bidiagonal) where {T} = Bidiagonal(convert(Vector{T}, A.dv), convert(Vector{T}, A.ev), A.isupper)
convert(::Type{Bidiagonal{T}}, A::Bidiagonal) where {T} = Bidiagonal(convert(Vector{T}, A.dv), convert(Vector{T}, A.ev), A.uplo)
# When asked to convert Bidiagonal to AbstractMatrix{T}, preserve structure by converting to Bidiagonal{T} <: AbstractMatrix{T}
convert(::Type{AbstractMatrix{T}}, A::Bidiagonal) where {T} = convert(Bidiagonal{T}, A)

broadcast(::typeof(big), B::Bidiagonal) = Bidiagonal(big.(B.dv), big.(B.ev), B.isupper)
broadcast(::typeof(big), B::Bidiagonal) = Bidiagonal(big.(B.dv), big.(B.ev), B.uplo)

similar(B::Bidiagonal, ::Type{T}) where {T} = Bidiagonal{T}(similar(B.dv, T), similar(B.ev, T), B.isupper)
similar(B::Bidiagonal, ::Type{T}) where {T} = Bidiagonal{T}(similar(B.dv, T), similar(B.ev, T), B.uplo)

###################
# LAPACK routines #
###################

#Singular values
svdvals!(M::Bidiagonal{<:BlasReal}) = LAPACK.bdsdc!(M.isupper ? 'U' : 'L', 'N', M.dv, M.ev)[1]
svdvals!(M::Bidiagonal{<:BlasReal}) = LAPACK.bdsdc!(M.uplo, 'N', M.dv, M.ev)[1]
function svdfact!(M::Bidiagonal{<:BlasReal}; thin::Bool=true)
d, e, U, Vt, Q, iQ = LAPACK.bdsdc!(M.isupper ? 'U' : 'L', 'I', M.dv, M.ev)
d, e, U, Vt, Q, iQ = LAPACK.bdsdc!(M.uplo, 'I', M.dv, M.ev)
SVD(U, d, Vt)
end
svdfact(M::Bidiagonal; thin::Bool=true) = svdfact!(copy(M),thin=thin)
Expand All @@ -241,7 +194,7 @@ function show(io::IO, M::Bidiagonal)
println(io, summary(M), ":")
print(io, " diag:")
print_matrix(io, (M.dv)')
print(io, M.isupper ? "\n super:" : "\n sub:")
print(io, M.uplo == 'U' ? "\n super:" : "\n sub:")
print_matrix(io, (M.ev)')
end

Expand All @@ -257,38 +210,38 @@ function size(M::Bidiagonal, d::Integer)
end

#Elementary operations
broadcast(::typeof(abs), M::Bidiagonal) = Bidiagonal(abs.(M.dv), abs.(M.ev), abs.(M.isupper))
broadcast(::typeof(round), M::Bidiagonal) = Bidiagonal(round.(M.dv), round.(M.ev), M.isupper)
broadcast(::typeof(trunc), M::Bidiagonal) = Bidiagonal(trunc.(M.dv), trunc.(M.ev), M.isupper)
broadcast(::typeof(floor), M::Bidiagonal) = Bidiagonal(floor.(M.dv), floor.(M.ev), M.isupper)
broadcast(::typeof(ceil), M::Bidiagonal) = Bidiagonal(ceil.(M.dv), ceil.(M.ev), M.isupper)
broadcast(::typeof(abs), M::Bidiagonal) = Bidiagonal(abs.(M.dv), abs.(M.ev), M.uplo)
broadcast(::typeof(round), M::Bidiagonal) = Bidiagonal(round.(M.dv), round.(M.ev), M.uplo)
broadcast(::typeof(trunc), M::Bidiagonal) = Bidiagonal(trunc.(M.dv), trunc.(M.ev), M.uplo)
broadcast(::typeof(floor), M::Bidiagonal) = Bidiagonal(floor.(M.dv), floor.(M.ev), M.uplo)
broadcast(::typeof(ceil), M::Bidiagonal) = Bidiagonal(ceil.(M.dv), ceil.(M.ev), M.uplo)
for func in (:conj, :copy, :real, :imag)
@eval ($func)(M::Bidiagonal) = Bidiagonal(($func)(M.dv), ($func)(M.ev), M.isupper)
@eval ($func)(M::Bidiagonal) = Bidiagonal(($func)(M.dv), ($func)(M.ev), M.uplo)
end
broadcast(::typeof(round), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(round.(T, M.dv), round.(T, M.ev), M.isupper)
broadcast(::typeof(trunc), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(trunc.(T, M.dv), trunc.(T, M.ev), M.isupper)
broadcast(::typeof(floor), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(floor.(T, M.dv), floor.(T, M.ev), M.isupper)
broadcast(::typeof(ceil), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(ceil.(T, M.dv), ceil.(T, M.ev), M.isupper)
broadcast(::typeof(round), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(round.(T, M.dv), round.(T, M.ev), M.uplo)
broadcast(::typeof(trunc), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(trunc.(T, M.dv), trunc.(T, M.ev), M.uplo)
broadcast(::typeof(floor), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(floor.(T, M.dv), floor.(T, M.ev), M.uplo)
broadcast(::typeof(ceil), ::Type{T}, M::Bidiagonal) where {T<:Integer} = Bidiagonal(ceil.(T, M.dv), ceil.(T, M.ev), M.uplo)

transpose(M::Bidiagonal) = Bidiagonal(M.dv, M.ev, !M.isupper)
ctranspose(M::Bidiagonal) = Bidiagonal(conj(M.dv), conj(M.ev), !M.isupper)
transpose(M::Bidiagonal) = Bidiagonal(M.dv, M.ev, M.uplo == 'U' ? :L : :U)
ctranspose(M::Bidiagonal) = Bidiagonal(conj(M.dv), conj(M.ev), M.uplo == 'U' ? :L : :U)

istriu(M::Bidiagonal) = M.isupper || iszero(M.ev)
istril(M::Bidiagonal) = !M.isupper || iszero(M.ev)
istriu(M::Bidiagonal) = M.uplo == 'U' || iszero(M.ev)
istril(M::Bidiagonal) = M.uplo == 'L' || iszero(M.ev)

function tril!(M::Bidiagonal, k::Integer=0)
n = length(M.dv)
if abs(k) > n
throw(ArgumentError("requested diagonal, $k, out of bounds in matrix of size ($n,$n)"))
elseif M.isupper && k < 0
elseif M.uplo == 'U' && k < 0
fill!(M.dv,0)
fill!(M.ev,0)
elseif k < -1
fill!(M.dv,0)
fill!(M.ev,0)
elseif M.isupper && k == 0
elseif M.uplo == 'U' && k == 0
fill!(M.ev,0)
elseif !M.isupper && k == -1
elseif M.uplo == 'L' && k == -1
fill!(M.dv,0)
end
return M
Expand All @@ -298,15 +251,15 @@ function triu!(M::Bidiagonal, k::Integer=0)
n = length(M.dv)
if abs(k) > n
throw(ArgumentError("requested diagonal, $k, out of bounds in matrix of size ($n,$n)"))
elseif !M.isupper && k > 0
elseif M.uplo == 'L' && k > 0
fill!(M.dv,0)
fill!(M.ev,0)
elseif k > 1
fill!(M.dv,0)
fill!(M.ev,0)
elseif !M.isupper && k == 0
elseif M.uplo == 'L' && k == 0
fill!(M.ev,0)
elseif M.isupper && k == 1
elseif M.uplo == 'U' && k == 1
fill!(M.dv,0)
end
return M
Expand All @@ -316,9 +269,9 @@ function diag(M::Bidiagonal{T}, n::Integer=0) where T
if n == 0
return M.dv
elseif n == 1
return M.isupper ? M.ev : zeros(T, size(M,1)-1)
return M.uplo == 'U' ? M.ev : zeros(T, size(M,1)-1)
elseif n == -1
return M.isupper ? zeros(T, size(M,1)-1) : M.ev
return M.uplo == 'L' ? M.ev : zeros(T, size(M,1)-1)
elseif -size(M,1) < n < size(M,1)
return zeros(T, size(M,1)-abs(n))
else
Expand All @@ -327,26 +280,26 @@ function diag(M::Bidiagonal{T}, n::Integer=0) where T
end

function +(A::Bidiagonal, B::Bidiagonal)
if A.isupper == B.isupper
Bidiagonal(A.dv+B.dv, A.ev+B.ev, A.isupper)
if A.uplo == B.uplo
Bidiagonal(A.dv+B.dv, A.ev+B.ev, A.uplo)
else
Tridiagonal((A.isupper ? (B.ev,A.dv+B.dv,A.ev) : (A.ev,A.dv+B.dv,B.ev))...)
Tridiagonal((A.uplo == 'U' ? (B.ev,A.dv+B.dv,A.ev) : (A.ev,A.dv+B.dv,B.ev))...)
end
end

function -(A::Bidiagonal, B::Bidiagonal)
if A.isupper == B.isupper
Bidiagonal(A.dv-B.dv, A.ev-B.ev, A.isupper)
if A.uplo == B.uplo
Bidiagonal(A.dv-B.dv, A.ev-B.ev, A.uplo)
else
Tridiagonal((A.isupper ? (-B.ev,A.dv-B.dv,A.ev) : (A.ev,A.dv-B.dv,-B.ev))...)
Tridiagonal((A.uplo == 'U' ? (-B.ev,A.dv-B.dv,A.ev) : (A.ev,A.dv-B.dv,-B.ev))...)
end
end

-(A::Bidiagonal)=Bidiagonal(-A.dv,-A.ev,A.isupper)
*(A::Bidiagonal, B::Number) = Bidiagonal(A.dv*B, A.ev*B, A.isupper)
-(A::Bidiagonal)=Bidiagonal(-A.dv,-A.ev,A.uplo)
*(A::Bidiagonal, B::Number) = Bidiagonal(A.dv*B, A.ev*B, A.uplo)
*(B::Number, A::Bidiagonal) = A*B
/(A::Bidiagonal, B::Number) = Bidiagonal(A.dv/B, A.ev/B, A.isupper)
==(A::Bidiagonal, B::Bidiagonal) = (A.dv==B.dv) && (A.ev==B.ev) && (A.isupper==B.isupper)
/(A::Bidiagonal, B::Number) = Bidiagonal(A.dv/B, A.ev/B, A.uplo)
==(A::Bidiagonal, B::Bidiagonal) = (A.uplo==B.uplo) && (A.dv==B.dv) && (A.ev==B.ev)

const BiTriSym = Union{Bidiagonal,Tridiagonal,SymTridiagonal}
const BiTri = Union{Bidiagonal,Tridiagonal}
Expand Down Expand Up @@ -543,7 +496,7 @@ function naivesub!(A::Bidiagonal{T}, b::AbstractVector, x::AbstractVector = b) w
if N != length(b) || N != length(x)
throw(DimensionMismatch("second dimension of A, $N, does not match one of the lengths of x, $(length(x)), or b, $(length(b))"))
end
if !A.isupper #do forward substitution
if A.uplo == 'L' #do forward substitution
for j = 1:N
x[j] = b[j]
j > 1 && (x[j] -= A.ev[j-1] * x[j-1])
Expand Down Expand Up @@ -579,7 +532,7 @@ function eigvecs(M::Bidiagonal{T}) where T
Q = Matrix{T}(n,n)
blks = [0; find(x -> x == 0, M.ev); n]
v = zeros(T, n)
if M.isupper
if M.uplo == 'U'
for idx_block = 1:length(blks) - 1, i = blks[idx_block] + 1:blks[idx_block + 1] #index of eigenvector
fill!(v, zero(T))
v[blks[idx_block] + 1] = one(T)
Expand Down
Loading

0 comments on commit ff781e5

Please sign in to comment.