Skip to content

Commit

Permalink
Add pure julia exp function (#19831)
Browse files Browse the repository at this point in the history
* Add pure julia exp function

* Add a few more ldexp tests
  • Loading branch information
musm authored and stevengj committed Jan 9, 2017
1 parent 0b8b6f1 commit f864b22
Show file tree
Hide file tree
Showing 6 changed files with 224 additions and 50 deletions.
1 change: 1 addition & 0 deletions LICENSE.md
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,7 @@ The following components of Julia's standard library have separate licenses:
- base/fftw.jl (see [FFTW](http://fftw.org/doc/License-and-Copyright.html))
- base/linalg/umfpack.jl (see [SUITESPARSE](http://faculty.cse.tamu.edu/davis/suitesparse.html))
- base/linalg/cholmod.jl (see [SUITESPARSE](http://faculty.cse.tamu.edu/davis/suitesparse.html))
- base/special/exp.jl (see [FREEBSD MSUN](https://github.com/freebsd/freebsd) [FreeBSD/2-clause BSD/Simplified BSD License])


Julia's build process uses the following external tools:
Expand Down
9 changes: 9 additions & 0 deletions base/float.jl
Original file line number Diff line number Diff line change
Expand Up @@ -738,9 +738,18 @@ exponent_one(::Type{Float16}) = 0x3c00
exponent_half(::Type{Float16}) = 0x3800
significand_mask(::Type{Float16}) = 0x03ff

# integer size of float
fpinttype(::Type{Float64}) = UInt64
fpinttype(::Type{Float32}) = UInt32
fpinttype(::Type{Float16}) = UInt16

@pure significand_bits{T<:AbstractFloat}(::Type{T}) = trailing_ones(significand_mask(T))
@pure exponent_bits{T<:AbstractFloat}(::Type{T}) = sizeof(T)*8 - significand_bits(T) - 1
@pure exponent_bias{T<:AbstractFloat}(::Type{T}) = Int(exponent_one(T) >> significand_bits(T))
# maximum float exponent
@pure exponent_max{T<:AbstractFloat}(::Type{T}) = Int(exponent_mask(T) >> significand_bits(T)) - exponent_bias(T)
# maximum float exponent without bias
@pure exponent_raw_max{T<:AbstractFloat}(::Type{T}) = Int(exponent_mask(T) >> significand_bits(T))

## Array operations on floating point numbers ##

Expand Down
27 changes: 12 additions & 15 deletions base/math.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,12 +26,13 @@ export sin, cos, tan, sinh, cosh, tanh, asin, acos, atan,
import Base: log, exp, sin, cos, tan, sinh, cosh, tanh, asin,
acos, atan, asinh, acosh, atanh, sqrt, log2, log10,
max, min, minmax, ^, exp2, muladd,
exp10, expm1, log1p,
sign_mask, exponent_mask, exponent_one, exponent_half,
significand_mask, significand_bits, exponent_bits, exponent_bias
exp10, expm1, log1p

using Base: sign_mask, exponent_mask, exponent_one, exponent_bias,
exponent_half, exponent_max, exponent_raw_max, fpinttype,
significand_mask, significand_bits, exponent_bits

import Core.Intrinsics: sqrt_llvm, box, unbox, powi_llvm
using Core.Intrinsics: sqrt_llvm, box, unbox, powi_llvm

# non-type specific math functions

Expand Down Expand Up @@ -222,13 +223,6 @@ Compute the inverse hyperbolic sine of `x`.
"""
asinh(x)

"""
exp(x)
Compute ``e^x``.
"""
exp(x)

"""
erf(x)
Expand All @@ -250,13 +244,16 @@ erfc(x)
Accurately compute ``e^x-1``.
"""
expm1(x)
for f in (:cbrt, :sinh, :cosh, :tanh, :atan, :asinh, :exp, :erf, :erfc, :exp2, :expm1)
for f in (:cbrt, :sinh, :cosh, :tanh, :atan, :asinh, :erf, :erfc, :exp2, :expm1)
@eval begin
($f)(x::Float64) = ccall(($(string(f)),libm), Float64, (Float64,), x)
($f)(x::Float32) = ccall(($(string(f,"f")),libm), Float32, (Float32,), x)
($f)(x::Real) = ($f)(float(x))
end
end
# pure julia exp function
include("special/exp.jl")
exp(x::Real) = exp(float(x))

# fallback definitions to prevent infinite loop from $f(x::Real) def above

Expand Down Expand Up @@ -530,11 +527,11 @@ function ldexp{T<:AbstractFloat}(x::T, e::Integer)
n = e % Int
k += n
# overflow, if k is larger than maximum posible exponent
if k >= Int(exponent_mask(T) >> significand_bits(T))
if k >= exponent_raw_max(T)
return flipsign(T(Inf), x)
end
if k > 0 # normal case
xu = (xu & ~exponent_mask(T)) | (k % typeof(xu) << significand_bits(T))
xu = (xu & ~exponent_mask(T)) | (rem(k, fpinttype(T)) << significand_bits(T))
return reinterpret(T, xu)
else # subnormal case
if k <= -significand_bits(T) # underflow
Expand All @@ -544,7 +541,7 @@ function ldexp{T<:AbstractFloat}(x::T, e::Integer)
end
k += significand_bits(T)
z = T(2.0)^-significand_bits(T)
xu = (xu & ~exponent_mask(T)) | (k % typeof(xu) << significand_bits(T))
xu = (xu & ~exponent_mask(T)) | (rem(k, fpinttype(T)) << significand_bits(T))
return z*reinterpret(T, xu)
end
end
Expand Down
134 changes: 134 additions & 0 deletions base/special/exp.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
# Based on FreeBSD lib/msun/src/e_exp.c
# which is made available under the following licence

## Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. Permission
## to use, copy, modify, and distribute this software is freely granted,
## provided that this notice is preserved.

# Method
# 1. Argument reduction: Reduce x to an r so that |r| <= 0.5*ln(2). Given x,
# find r and integer k such that
# x = k*ln(2) + r, |r| <= 0.5*ln(2).
# Here r is represented as r = hi - lo for better accuracy.
#
# 2. Approximate exp(r) by a special rational function on [0, 0.5*ln(2)]:
# R(r^2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r^4/360 + ...
#
# A special Remez algorithm on [0, 0.5*ln(2)] is used to generate a
# polynomial to approximate R.
#
# The computation of exp(r) thus becomes
# 2*r
# exp(r) = 1 + ----------
# R(r) - r
# r*c(r)
# = 1 + r + ----------- (for better accuracy)
# 2 - c(r)
# where
# c(r) = r - (P1*r^2 + P2*r^4 + ... + P5*r^10 + ...).
#
# 3. Scale back: exp(x) = 2^k * exp(r)

# log(2)
const LN2 = 6.931471805599453094172321214581765680755001343602552541206800094933936219696955e-01
# log2(e)
const LOG2E = 1.442695040888963407359924681001892137426646

# log(2) into upper and lower
LN2U(::Type{Float64}) = 6.93147180369123816490e-1
LN2U(::Type{Float32}) = 6.9313812256f-1

LN2L(::Type{Float64}) = 1.90821492927058770002e-10
LN2L(::Type{Float32}) = 9.0580006145f-6

# max and min arguments for exponential fucntions
MAXEXP(::Type{Float64}) = 7.09782712893383996732e2 # log 2^1023*(2-2^-52)
MAXEXP(::Type{Float32}) = 88.72283905206835f0 # log 2^127 *(2-2^-23)

# one less than the min exponent since we can sqeeze a bit more from the exp function
MINEXP(::Type{Float64}) = -7.451332191019412076235e2 # log 2^-1075
MINEXP(::Type{Float32}) = -103.97207708f0 # log 2^-150

@inline exp_kernel(x::Float64) = @horner(x, 1.66666666666666019037e-1,
-2.77777777770155933842e-3, 6.61375632143793436117e-5,
-1.65339022054652515390e-6, 4.13813679705723846039e-8)

@inline exp_kernel(x::Float32) = @horner(x, 1.6666625440f-1, -2.7667332906f-3)

# for values smaller than this threshold just use a Taylor expansion
exp_small_thres(::Type{Float64}) = 2.0^-28
exp_small_thres(::Type{Float32}) = 2.0f0^-13

"""
exp(x)
Compute the natural base exponential of `x`, in other words ``e^x``.
"""
function exp{T<:Union{Float32,Float64}}(x::T)
xa = reinterpret(Unsigned, x) & ~sign_mask(T)
xsb = signbit(x)

# filter out non-finite arguments
if xa > reinterpret(Unsigned, MAXEXP(T))
if xa >= exponent_mask(T)
xa & significand_mask(T) != 0 && return T(NaN)
return xsb ? T(0.0) : T(Inf) # exp(+-Inf)
end
x > MAXEXP(T) && return T(Inf)
x < MINEXP(T) && return T(0.0)
end

# This implementation gives 2.7182818284590455 for exp(1.0) when T ==
# Float64, which is well within the allowable error; however,
# 2.718281828459045 is closer to the true value so we prefer that answer,
# given that 1.0 is such an important argument value.
if x == T(1.0) && T == Float64
return 2.718281828459045235360
end

if xa > reinterpret(Unsigned, T(0.5)*T(LN2)) # |x| > 0.5 log(2)
# argument reduction
if xa < reinterpret(Unsigned, T(1.5)*T(LN2)) # |x| < 1.5 log(2)
if xsb
k = -1
hi = x + LN2U(T)
lo = -LN2L(T)
else
k = 1
hi = x - LN2U(T)
lo = LN2L(T)
end
else
n = round(T(LOG2E)*x)
k = unsafe_trunc(Int,n)
hi = muladd(n, -LN2U(T), x)
lo = n*LN2L(T)
end
r = hi - lo

# compute approximation on reduced argument
z = r*r
p = r - z*exp_kernel(z)
y = T(1.0) - ((lo - (r*p)/(T(2.0) - p)) - hi)

# scale back
if k > -significand_bits(T)
# multiply by 2.0 first to prevent overflow, which helps extends the range
k == exponent_max(T) && return y*T(2.0)*T(2.0)^(exponent_max(T) - 1)
twopk = reinterpret(T, rem(exponent_bias(T) + k, fpinttype(T)) << significand_bits(T))
return y*twopk
else
# add significand_bits(T) + 1 to lift the range outside the subnormals
twopk = reinterpret(T, rem(exponent_bias(T) + significand_bits(T) + 1 + k, fpinttype(T)) << significand_bits(T))
return y*twopk*T(2.0)^(-significand_bits(T) - 1)
end
elseif xa < reinterpret(Unsigned, exp_small_thres(T)) # |x| < exp_small_thres
# Taylor approximation for small x
return T(1.0) + x
else
# primary range with k = 0, so compute approximation directly
z = x*x
p = x - z*exp_kernel(z)
return T(1.0) - ((x*p)/(p - T(2.0)) - x)
end
end
1 change: 1 addition & 0 deletions contrib/add_license_to_files.jl
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ const skipfiles = [
# files to check - already copyright
# see: https://github.com/JuliaLang/julia/pull/11073#issuecomment-98099389
"../base/special/trig.jl",
"../base/special/exp.jl"
"../base/linalg/givens.jl",
#
"../src/abi_llvm.cpp",
Expand Down
102 changes: 67 additions & 35 deletions test/math.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,8 +23,8 @@
end

@testset "constants" begin
@test !(pi == e)
@test !(e == 1//2)
@test pi != e
@test e != 1//2
@test 1//2 <= e
@test e <= 15//3
@test big(1//2) < e
Expand All @@ -34,8 +34,8 @@ end
@test e^2.4 == exp(2.4)
@test e^(2//3) == exp(2//3)

@test Float16(3.) < pi
@test pi < Float16(4.)
@test Float16(3.0) < pi
@test pi < Float16(4.0)
@test contains(sprint(show,π),"3.14159")
end

Expand Down Expand Up @@ -71,37 +71,51 @@ end
@test isnan(x)
@test y == 0

# more ldexp tests
@test ldexp(T(0.8), 4) === T(12.8)
@test ldexp(T(-0.854375), 5) === T(-27.34)
@test ldexp(T(1.0), typemax(Int)) === T(Inf)
@test ldexp(T(1.0), typemin(Int)) === T(0.0)
@test ldexp(prevfloat(realmin(T)), typemax(Int)) === T(Inf)
@test ldexp(prevfloat(realmin(T)), typemin(Int)) === T(0.0)

@test ldexp(T(0.8), Int128(4)) === T(12.8)
@test ldexp(T(-0.854375), Int128(5)) === T(-27.34)
@test ldexp(T(1.0), typemax(Int128)) === T(Inf)
@test ldexp(T(1.0), typemin(Int128)) === T(0.0)
@test ldexp(prevfloat(realmin(T)), typemax(Int128)) === T(Inf)
@test ldexp(prevfloat(realmin(T)), typemin(Int128)) === T(0.0)

@test ldexp(T(0.8), BigInt(4)) === T(12.8)
@test ldexp(T(-0.854375), BigInt(5)) === T(-27.34)
@test ldexp(T(1.0), BigInt(typemax(Int128))) === T(Inf)
@test ldexp(T(1.0), BigInt(typemin(Int128))) === T(0.0)
@test ldexp(prevfloat(realmin(T)), BigInt(typemax(Int128))) === T(Inf)
@test ldexp(prevfloat(realmin(T)), BigInt(typemin(Int128))) === T(0.0)

# Test also against BigFloat reference. Needs to be exactly rounded.
@test ldexp(realmin(T), -1) == T(ldexp(big(realmin(T)), -1))
@test ldexp(realmin(T), -2) == T(ldexp(big(realmin(T)), -2))
@test ldexp(realmin(T)/2, 0) == T(ldexp(big(realmin(T)/2), 0))
@test ldexp(realmin(T)/3, 0) == T(ldexp(big(realmin(T)/3), 0))
@test ldexp(realmin(T)/3, -1) == T(ldexp(big(realmin(T)/3), -1))
@test ldexp(realmin(T)/3, 11) == T(ldexp(big(realmin(T)/3), 11))
@test ldexp(realmin(T)/11, -10) == T(ldexp(big(realmin(T)/11), -10))
@test ldexp(-realmin(T)/11, -10) == T(ldexp(big(-realmin(T)/11), -10))
@testset "ldexp function" begin
@test ldexp(T(0.0), 0) === T(0.0)
@test ldexp(T(-0.0), 0) === T(-0.0)
@test ldexp(T(Inf), 1) === T(Inf)
@test ldexp(T(Inf), 10000) === T(Inf)
@test ldexp(T(-Inf), 1) === T(-Inf)
@test ldexp(T(NaN), 10) === T(NaN)
@test ldexp(T(1.0), 0) === T(1.0)
@test ldexp(T(0.8), 4) === T(12.8)
@test ldexp(T(-0.854375), 5) === T(-27.34)
@test ldexp(T(1.0), typemax(Int)) === T(Inf)
@test ldexp(T(1.0), typemin(Int)) === T(0.0)
@test ldexp(prevfloat(realmin(T)), typemax(Int)) === T(Inf)
@test ldexp(prevfloat(realmin(T)), typemin(Int)) === T(0.0)

@test ldexp(T(0.0), Int128(0)) === T(0.0)
@test ldexp(T(-0.0), Int128(0)) === T(-0.0)
@test ldexp(T(1.0), Int128(0)) === T(1.0)
@test ldexp(T(0.8), Int128(4)) === T(12.8)
@test ldexp(T(-0.854375), Int128(5)) === T(-27.34)
@test ldexp(T(1.0), typemax(Int128)) === T(Inf)
@test ldexp(T(1.0), typemin(Int128)) === T(0.0)
@test ldexp(prevfloat(realmin(T)), typemax(Int128)) === T(Inf)
@test ldexp(prevfloat(realmin(T)), typemin(Int128)) === T(0.0)

@test ldexp(T(0.0), BigInt(0)) === T(0.0)
@test ldexp(T(-0.0), BigInt(0)) === T(-0.0)
@test ldexp(T(1.0), BigInt(0)) === T(1.0)
@test ldexp(T(0.8), BigInt(4)) === T(12.8)
@test ldexp(T(-0.854375), BigInt(5)) === T(-27.34)
@test ldexp(T(1.0), BigInt(typemax(Int128))) === T(Inf)
@test ldexp(T(1.0), BigInt(typemin(Int128))) === T(0.0)
@test ldexp(prevfloat(realmin(T)), BigInt(typemax(Int128))) === T(Inf)
@test ldexp(prevfloat(realmin(T)), BigInt(typemin(Int128))) === T(0.0)

# Test also against BigFloat reference. Needs to be exactly rounded.
@test ldexp(realmin(T), -1) == T(ldexp(big(realmin(T)), -1))
@test ldexp(realmin(T), -2) == T(ldexp(big(realmin(T)), -2))
@test ldexp(realmin(T)/2, 0) == T(ldexp(big(realmin(T)/2), 0))
@test ldexp(realmin(T)/3, 0) == T(ldexp(big(realmin(T)/3), 0))
@test ldexp(realmin(T)/3, -1) == T(ldexp(big(realmin(T)/3), -1))
@test ldexp(realmin(T)/3, 11) == T(ldexp(big(realmin(T)/3), 11))
@test ldexp(realmin(T)/11, -10) == T(ldexp(big(realmin(T)/11), -10))
@test ldexp(-realmin(T)/11, -10) == T(ldexp(big(-realmin(T)/11), -10))
end
end
end

Expand Down Expand Up @@ -235,6 +249,24 @@ end
@test exp2(Float16(2.)) exp2(2.)
@test log(e) == 1

@testset "exp function" for T in (Float64, Float32)
@testset "$T accuracy" begin
X = map(T, vcat(-10:0.0002:10, -80:0.001:80, 2.0^-27, 2.0^-28, 2.0^-14, 2.0^-13))
for x in X
y, yb = exp(x), exp(big(x))
@test abs(y-yb) <= 1.0*eps(T(yb))
end
end
@testset "$T edge cases" begin
@test isnan(exp(T(NaN)))
@test exp(T(-Inf)) === T(0.0)
@test exp(T(Inf)) === T(Inf)
@test exp(T(0.0)) === T(1.0) # exact
@test exp(T(5000.0)) === T(Inf)
@test exp(T(-5000.0)) === T(0.0)
end
end

@testset "test abstractarray trig fxns" begin
TAA = rand(2,2)
TAA = (TAA + TAA.')/2.
Expand Down

0 comments on commit f864b22

Please sign in to comment.