Skip to content

Commit

Permalink
backport #46412 to 1.8 (#46417)
Browse files Browse the repository at this point in the history
  • Loading branch information
oscardssmith authored Aug 22, 2022
1 parent 27890c7 commit 8ed3bc6
Show file tree
Hide file tree
Showing 2 changed files with 49 additions and 17 deletions.
37 changes: 23 additions & 14 deletions base/math.jl
Original file line number Diff line number Diff line change
Expand Up @@ -996,18 +996,22 @@ end
# @constprop aggressive to help the compiler see the switch between the integer and float
# variants for callers with constant `y`
@constprop :aggressive function ^(x::Float64, y::Float64)
yint = unsafe_trunc(Int, y) # Note, this is actually safe since julia freezes the result
y == yint && return x^yint
#numbers greater than 2*inv(eps(T)) must be even, and the pow will overflow
y >= 2*inv(eps()) && return x^(typemax(Int64)-1)
x<0 && y > -4e18 && throw_exp_domainerror(x) # |y| is small enough that y isn't an integer
x == 1 && return 1.0
# Exponents greater than this will always overflow or underflow.
# Note that NaN can pass through this, but that will end up fine.
if !(abs(y)<0x1.8p62)
isnan(y) && return y
y = sign(y)*0x1.8p62
end
yint = unsafe_trunc(Int64, y) # This is actually safe since julia freezes the result
y == yint && return x^yint
x<0 && throw_exp_domainerror(x)
!isfinite(x) && return x*(y>0 || isnan(x))
x==0 && return abs(y)*Inf*(!(y>0))
return pow_body(x, y)
end

@inline function pow_body(x::Float64, y::Float64)
!isfinite(x) && return x*(y>0 || isnan(x))
x==0 && return abs(y)*Inf*(!(y>0))
logxhi,logxlo = Base.Math._log_ext(x)
xyhi, xylo = two_mul(logxhi,y)
xylo = muladd(logxlo, y, xylo)
Expand All @@ -1016,18 +1020,23 @@ end
end

@constprop :aggressive function ^(x::T, y::T) where T <: Union{Float16, Float32}
yint = unsafe_trunc(Int64, y) # Note, this is actually safe since julia freezes the result
x == 1 && return one(T)
# Exponents greater than this will always overflow or underflow.
# Note that NaN can pass through this, but that will end up fine.
max_exp = T == Float16 ? T(3<<14) : T(0x1.Ap30)
if !(abs(y)<max_exp)
isnan(y) && return y
y = sign(y)*max_exp
end
yint = unsafe_trunc(Int32, y) # This is actually safe since julia freezes the result
y == yint && return x^yint
#numbers greater than 2*inv(eps(T)) must be even, and the pow will overflow
y >= 2*inv(eps(T)) && return x^(typemax(Int64)-1)
x < 0 && y > -4e18 && throw_exp_domainerror(x) # |y| is small enough that y isn't an integer
x < 0 && throw_exp_domainerror(x)
!isfinite(x) && return x*(y>0 || isnan(x))
x==0 && return abs(y)*T(Inf)*(!(y>0))
return pow_body(x, y)
end

@inline function pow_body(x::T, y::T) where T <: Union{Float16, Float32}
x == 1 && return one(T)
!isfinite(x) && return x*(y>0 || isnan(x))
x==0 && return abs(y)*T(Inf)*(!(y>0))
return T(exp2(log2(abs(widen(x))) * y))
end

Expand Down
29 changes: 26 additions & 3 deletions test/math.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1318,18 +1318,41 @@ end
end

@testset "pow" begin
# tolerance by type for regular powers
POW_TOLS = Dict(Float16=>[.51, .51, 2.0, 1.5],
Float32=>[.51, .51, 2.0, 1.5],
Float64=>[1.0, 1.5, 2.0, 1.5])
for T in (Float16, Float32, Float64)
for x in (0.0, -0.0, 1.0, 10.0, 2.0, Inf, NaN, -Inf, -NaN)
for y in (0.0, -0.0, 1.0, -3.0,-10.0 , Inf, NaN, -Inf, -NaN)
got, expected = T(x)^T(y), T(big(x))^T(y)
@test isnan_type(T, got) && isnan_type(T, expected) || (got === expected)
got, expected = T(x)^T(y), T(big(x)^T(y))
if isnan(expected)
@test isnan_type(T, got) || T.((x,y))
else
@test got == expected || T.((x,y))
end
end
end
for _ in 1:2^16
# note x won't be subnormal here
x=rand(T)*100; y=rand(T)*200-100
got, expected = x^y, widen(x)^y
if isfinite(eps(T(expected)))
@test abs(expected-got) <= 1.3*eps(T(expected)) || (x,y)
if y == T(-2) # unfortunately x^-2 is less accurate for performance reasons.
@test abs(expected-got) <= POW_TOLS[T][3]*eps(T(expected)) || (x,y)
elseif y == T(3) # unfortunately x^3 is less accurate for performance reasons.
@test abs(expected-got) <= POW_TOLS[T][4]*eps(T(expected)) || (x,y)
else
@test abs(expected-got) <= POW_TOLS[T][1]*eps(T(expected)) || (x,y)
end
end
end
for _ in 1:2^14
# test subnormal(x), y in -1.2, 1.8 since anything larger just overflows.
x=rand(T)*floatmin(T); y=rand(T)*3-T(1.2)
got, expected = x^y, widen(x)^y
if isfinite(eps(T(expected)))
@test abs(expected-got) <= POW_TOLS[T][2]*eps(T(expected)) || (x,y)
end
end
# test (-x)^y for y larger than typemax(Int)
Expand Down

0 comments on commit 8ed3bc6

Please sign in to comment.