Skip to content

Commit

Permalink
APL indexing
Browse files Browse the repository at this point in the history
  • Loading branch information
mbauman committed Mar 10, 2016
1 parent 597dc7b commit 7010952
Show file tree
Hide file tree
Showing 5 changed files with 163 additions and 101 deletions.
8 changes: 7 additions & 1 deletion NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,9 @@ Library improvements
* Linear algebra:

* All dimensions indexed by scalars are now dropped, whereas previously only
trailing scalar dimensions would be omitted from the result.
trailing scalar dimensions would be omitted from the result ([#13612]).

* Dimensions indexed by multidimensional arrays add dimensions. More generally, the dimensionality of the result is the sum of the dimensionalities of the indices ([#15431]).

* New `normalize` and `normalize!` convenience functions for normalizing
vectors ([#13681]).
Expand Down Expand Up @@ -1781,6 +1783,7 @@ Too numerous to mention.
[#13480]: https://github.com/JuliaLang/julia/issues/13480
[#13496]: https://github.com/JuliaLang/julia/issues/13496
[#13542]: https://github.com/JuliaLang/julia/issues/13542
[#13612]: https://github.com/JuliaLang/julia/issues/13612
[#13680]: https://github.com/JuliaLang/julia/issues/13680
[#13681]: https://github.com/JuliaLang/julia/issues/13681
[#13780]: https://github.com/JuliaLang/julia/issues/13780
Expand All @@ -1793,4 +1796,7 @@ Too numerous to mention.
[#14469]: https://github.com/JuliaLang/julia/issues/14469
[#14759]: https://github.com/JuliaLang/julia/issues/14759
[#14798]: https://github.com/JuliaLang/julia/issues/14798
[#15192]: https://github.com/JuliaLang/julia/issues/15192
[#15242]: https://github.com/JuliaLang/julia/issues/15242
[#15258]: https://github.com/JuliaLang/julia/issues/15258
[#15430]: https://github.com/JuliaLang/julia/issues/15431
87 changes: 38 additions & 49 deletions base/multidimensional.jl
Original file line number Diff line number Diff line change
Expand Up @@ -169,31 +169,27 @@ using .IteratorsMD
# Recursively compute the lengths of a list of indices, without dropping scalars
# These need to be inlined for more than 3 indexes
index_lengths(A::AbstractArray, I::Colon) = (length(A),)
index_lengths(A::AbstractArray, I::AbstractArray{Bool}) = (sum(I),)
index_lengths(A::AbstractArray, I::AbstractArray) = (length(I),)
@inline index_lengths(A::AbstractArray, I...) = index_lengths_dim(A, 1, I...)
index_lengths_dim(A, dim) = ()
index_lengths_dim(A, dim, ::Colon) = (trailingsize(A, dim),)
@inline index_lengths_dim(A, dim, ::Colon, i, I...) = (size(A, dim), index_lengths_dim(A, dim+1, i, I...)...)
@inline index_lengths_dim(A, dim, ::Real, I...) = (1, index_lengths_dim(A, dim+1, I...)...)
@inline index_lengths_dim{N}(A, dim, ::CartesianIndex{N}, I...) = (1, index_shape_dim(A, dim+N, I...)...)
@inline index_lengths_dim(A, dim, i::AbstractArray{Bool}, I...) = (sum(i), index_lengths_dim(A, dim+1, I...)...)
@inline index_lengths_dim(A, dim, i::AbstractArray, I...) = (length(i), index_lengths_dim(A, dim+1, I...)...)
@inline index_lengths_dim(A, dim, i::AbstractArray{Bool}, I...) = (sum(i), index_lengths_dim(A, dim+1, I...)...)
@inline index_lengths_dim{N}(A, dim, i::AbstractArray{CartesianIndex{N}}, I...) = (length(i), index_lengths_dim(A, dim+N, I...)...)

# shape of array to create for getindex() with indexes I, dropping scalars
index_shape(A::AbstractArray, I::AbstractArray) = size(I) # Linear index reshape
index_shape(A::AbstractArray, I::AbstractArray{Bool}) = (sum(I),) # Logical index
index_shape(A::AbstractArray, I::Colon) = (length(A),)
@inline index_shape(A::AbstractArray, I...) = index_shape_dim(A, 1, I...)
index_shape_dim(A, dim, I::Real...) = ()
index_shape_dim(A, dim, ::Colon) = (trailingsize(A, dim),)
@inline index_shape_dim(A, dim, ::Colon, i, I...) = (size(A, dim), index_shape_dim(A, dim+1, i, I...)...)
@inline index_shape_dim(A, dim, ::Real, I...) = (index_shape_dim(A, dim+1, I...)...)
@inline index_shape_dim{N}(A, dim, ::CartesianIndex{N}, I...) = (index_shape_dim(A, dim+N, I...)...)
@inline index_shape_dim(A, dim, i::AbstractVector{Bool}, I...) = (sum(i), index_shape_dim(A, dim+1, I...)...)
@inline index_shape_dim(A, dim, i::AbstractVector, I...) = (length(i), index_shape_dim(A, dim+1, I...)...)
@inline index_shape_dim{N}(A, dim, i::AbstractVector{CartesianIndex{N}}, I...) = (length(i), index_shape_dim(A, dim+N, I...)...)
@inline index_shape_dim(A, dim, i::AbstractArray, I...) = (size(i)..., index_shape_dim(A, dim+1, I...)...)
@inline index_shape_dim(A, dim, i::AbstractArray{Bool}, I...) = (sum(i), index_shape_dim(A, dim+1, I...)...)
@inline index_shape_dim{N}(A, dim, i::AbstractArray{CartesianIndex{N}}, I...) = (size(i)..., index_shape_dim(A, dim+N, I...)...)

### From abstractarray.jl: Internal multidimensional indexing definitions ###
# These are not defined on directly on getindex to avoid
Expand All @@ -209,8 +205,9 @@ end
quote
# This is specifically *not* inlined.
@nexprs $N d->(I_d = to_index(I[d]))
dest = similar(A, @ncall $N index_shape A I)
@ncall $N checksize dest I
shape = @ncall $N index_shape A I
dest = similar(A, shape)
size(dest) == shape || throw_checksize_error(dest, shape)
@ncall $N _unsafe_getindex! dest A I
end
end
Expand All @@ -219,10 +216,10 @@ end
# This is inherently a linear operation in the source, but we could potentially
# use fast dividing integers to speed it up.
function _unsafe_getindex(::LinearIndexing, src::AbstractArray, I::AbstractArray{Bool})
# Both index_shape and checksize compute sum(I); manually hoist it out
N = sum(I)
dest = similar(src, (N,))
size(dest) == (N,) || throw(DimensionMismatch())
shape = index_shape(src, I)
dest = similar(src, shape)
size(dest) == shape || throw_checksize_error(dest, shape)

D = eachindex(dest)
Ds = start(D)
s = 0
Expand All @@ -237,20 +234,8 @@ function _unsafe_getindex(::LinearIndexing, src::AbstractArray, I::AbstractArray
dest
end

# Indexing with an array of indices is inherently linear in the source, but
# might be able to be optimized with fast dividing integers
@inline function _unsafe_getindex!(dest::AbstractArray, src::AbstractArray, I::AbstractArray)
D = eachindex(dest)
Ds = start(D)
for idx in I
d, Ds = next(D, Ds)
@inbounds dest[d] = src[idx]
end
dest
end

# Always index with the exactly indices provided.
@generated function _unsafe_getindex!(dest::AbstractArray, src::AbstractArray, I::Union{Real, AbstractVector, Colon}...)
@generated function _unsafe_getindex!(dest::AbstractArray, src::AbstractArray, I::Union{Real, AbstractArray, Colon}...)
N = length(I)
quote
$(Expr(:meta, :inline))
Expand All @@ -265,26 +250,7 @@ end
end
end

# checksize ensures the output array A is the correct size for the given indices
@noinline throw_checksize_error(A, dim, idx) = throw(DimensionMismatch("index $dim selects $(length(idx)) elements, but size(A, $dim) = $(size(A,dim))"))
@noinline throw_checksize_error(A, dim, idx::AbstractArray{Bool}) = throw(DimensionMismatch("index $dim selects $(sum(idx)) elements, but size(A, $dim) = $(size(A,dim))"))

checksize(A::AbstractArray, I::AbstractArray) = size(A) == size(I) || throw_checksize_error(A, 1, I)
checksize(A::AbstractArray, I::AbstractArray{Bool}) = length(A) == sum(I) || throw_checksize_error(A, 1, I)

@inline checksize(A::AbstractArray, I...) = _checksize(A, 1, I...)
_checksize(A::AbstractArray, dim) = true
# Drop dimensions indexed by scalars, ignore colons
@inline _checksize(A::AbstractArray, dim, ::Real, J...) = _checksize(A, dim, J...)
@inline _checksize(A::AbstractArray, dim, ::Colon, J...) = _checksize(A, dim+1, J...)
@inline function _checksize(A::AbstractArray, dim, I, J...)
size(A, dim) == length(I) || throw_checksize_error(A, dim, I)
_checksize(A, dim+1, J...)
end
@inline function _checksize(A::AbstractArray, dim, I::AbstractVector{Bool}, J...)
size(A, dim) == sum(I) || throw_checksize_error(A, dim, I)
_checksize(A, dim+1, J...)
end
@noinline throw_checksize_error(A, sz) = throw(DimensionMismatch("output array is the wrong size; expected $sz, got $(size(A))"))

## setindex! ##
# For multi-element setindex!, we check bounds, convert the indices (to_index),
Expand Down Expand Up @@ -472,9 +438,32 @@ inlinemap(f, t::Tuple, s::Tuple{}) = ()
@inline merge_indexes{N}(V, indexes::NTuple{N}, index) = merge_indexes_div(V, indexes, index, index_lengths_dim(V.parent, length(V.indexes)-N+1, indexes...))

@inline merge_indexes_div{N}(V, indexes::NTuple{N}, index::Real, dimlengths) = CartesianIndex(inlinemap(getindex, indexes, ind2sub(dimlengths, index)))
merge_indexes_div{N}(V, indexes::NTuple{N}, index, dimlengths) = [CartesianIndex(inlinemap(getindex, indexes, ind2sub(dimlengths, i))) for i in index]
merge_indexes_div{N}(V, indexes::NTuple{N}, index::AbstractArray, dimlengths) = reshape([CartesianIndex(inlinemap(getindex, indexes, ind2sub(dimlengths, i))) for i in index], size(index))
merge_indexes_div{N}(V, indexes::NTuple{N}, index::Colon, dimlengths) = [CartesianIndex(inlinemap(getindex, indexes, ind2sub(dimlengths, i))) for i in 1:prod(dimlengths)]

# Merging indices is particularly difficult in the case where we partially linearly
# index through a multidimensional array. It's easiest if we can simply reduce the
# partial indices to a single linear index into the parent index array.
function merge_indexes{N}(V, indexes::NTuple{N}, index::Tuple{Colon, Vararg{Colon}})
shape = index_shape(indexes[1], index...)
reshape(merge_indexes(V, indexes, :), (shape[1:end-1]..., shape[end]*prod(index_lengths_dim(V.parent, length(V.indexes)-length(indexes)+2, tail(indexes)...))))
end
@inline merge_indexes{N}(V, indexes::NTuple{N}, index::Tuple{Real, Vararg{Real}}) = merge_indexes(V, indexes, sub2ind(size(indexes[1]), index...))
# In general, it's a little trickier, but we can use the product iterator
# if we replace colons with ranges. This can be optimized further.
function merge_indexes{N}(V, indexes::NTuple{N}, index::Tuple)
I = replace_colons(V, indexes, index)
shp = index_shape(indexes[1], I...) # index_shape does no bounds checking
dimlengths = index_lengths_dim(V.parent, length(V.indexes)-N+1, indexes...)
sz = size(indexes[1])
reshape([CartesianIndex(inlinemap(getindex, indexes, ind2sub(dimlengths, sub2ind(sz, i...)))) for i in product(I...)], shp)
end
@inline replace_colons(V, indexes, I) = replace_colons_dim(V, indexes, 1, I)
@inline replace_colons_dim(V, indexes, dim, I::Tuple{}) = ()
@inline replace_colons_dim(V, indexes, dim, I::Tuple{Colon}) = (1:trailingsize(indexes[1], dim)*prod(index_lengths_dim(V.parent, length(V.indexes)-length(indexes)+2, tail(indexes)...)),)
@inline replace_colons_dim(V, indexes, dim, I::Tuple{Colon, Vararg{Any}}) = (1:size(indexes[1], dim), replace_colons_dim(V, indexes, dim+1, tail(I))...)
@inline replace_colons_dim(V, indexes, dim, I::Tuple{Any, Vararg{Any}}) = (I[1], replace_colons_dim(V, indexes, dim+1, tail(I))...)


cumsum(A::AbstractArray, axis::Integer=1) = cumsum!(similar(A, Base._cumsum_type(A)), A, axis)
cumsum!(B, A::AbstractArray) = cumsum!(B, A, 1)
Expand Down Expand Up @@ -598,7 +587,7 @@ end
# in the general multidimensional non-scalar case, can we do about 10% better
# in most cases by manually hoisting the bitarray chunks access out of the loop
# (This should really be handled by the compiler or with an immutable BitArray)
@generated function _unsafe_getindex!(X::BitArray, B::BitArray, I::Union{Int,AbstractVector{Int},Colon}...)
@generated function _unsafe_getindex!(X::BitArray, B::BitArray, I::Union{Int,AbstractArray{Int},Colon}...)
N = length(I)
quote
$(Expr(:meta, :inline))
Expand Down
67 changes: 52 additions & 15 deletions base/subarray.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# This file is a part of Julia. License is MIT: http://julialang.org/license

typealias NonSliceIndex Union{Colon, AbstractVector}
typealias NonSliceIndex Union{Colon, AbstractArray}
typealias ViewIndex Union{Real, NonSliceIndex}

# L is true if the view itself supports fast linear indexing
Expand Down Expand Up @@ -118,24 +118,61 @@ reindex(V, idxs::Tuple{}, subidxs::Tuple{DroppedScalar, Vararg{Any}}) =
reindex(V, idxs::Tuple{}, subidxs::Tuple{Any, Vararg{Any}}) =
(@_propagate_inbounds_meta; (subidxs[1], reindex(V, idxs, tail(subidxs))...))

reindex(V, idxs::Tuple{Any}, subidxs::Tuple{Any}) =
(@_propagate_inbounds_meta; (idxs[1][subidxs[1]],))
reindex(V, idxs::Tuple{Any}, subidxs::Tuple{Any, Any, Vararg{Any}}) =
(@_propagate_inbounds_meta; (idxs[1][subidxs[1]],))
reindex(V, idxs::Tuple{Any, Any, Vararg{Any}}, subidxs::Tuple{Any}) =
# Skip dropped scalars, so simply peel them off the parent indices and continue
reindex(V, idxs::Tuple{DroppedScalar, Vararg{Any}}, subidxs::Tuple{Vararg{Any}}) =
(@_propagate_inbounds_meta; (idxs[1], reindex(V, tail(idxs), subidxs)...))

# Colons simply pass their subindexes straight through
reindex(V, idxs::Tuple{Colon}, subidxs::Tuple{Any}) =
(@_propagate_inbounds_meta; (subidxs[1],))
reindex(V, idxs::Tuple{Colon, Vararg{Any}}, subidxs::Tuple{Any, Vararg{Any}}) =
(@_propagate_inbounds_meta; (subidxs[1], reindex(V, tail(idxs), tail(subidxs))...))
reindex(V, idxs::Tuple{Colon, Vararg{Any}}, subidxs::Tuple{Any}) =
(@_propagate_inbounds_meta; (merge_indexes(V, idxs, subidxs[1]),))
# As an optimization, we don't need to merge indices if all trailing indices are dropped scalars
reindex(V, idxs::Tuple{Any, DroppedScalar, Vararg{DroppedScalar}}, subidxs::Tuple{Any}) =
(@_propagate_inbounds_meta; (idxs[1][subidxs[1]], tail(idxs)...))
reindex(V, idxs::Tuple{Any, Any, Vararg{Any}}, subidxs::Tuple{Any, Any, Vararg{Any}}) =
reindex(V, idxs::Tuple{Colon, Vararg{DroppedScalar}}, subidxs::Tuple{Any}) =
(@_propagate_inbounds_meta; (subidxs[1], tail(idxs)...))

# Re-index into parent vectors with one subindex
reindex(V, idxs::Tuple{AbstractVector}, subidxs::Tuple{Any}) =
(@_propagate_inbounds_meta; (idxs[1][subidxs[1]],))
reindex(V, idxs::Tuple{AbstractVector, Vararg{Any}}, subidxs::Tuple{Any, Vararg{Any}}) =
(@_propagate_inbounds_meta; (idxs[1][subidxs[1]], reindex(V, tail(idxs), tail(subidxs))...))
reindex(V, idxs::Tuple{AbstractVector, Vararg{Any}}, subidxs::Tuple{Any}) =
(@_propagate_inbounds_meta; (merge_indexes(V, idxs, subidxs[1]),))
reindex(V, idxs::Tuple{AbstractVector, Vararg{DroppedScalar}}, subidxs::Tuple{Any}) =
(@_propagate_inbounds_meta; (idxs[1][subidxs[1]], tail(idxs)...))

reindex(V, idxs::Tuple{DroppedScalar}, subidxs::Tuple{Any}) = idxs
reindex(V, idxs::Tuple{DroppedScalar}, subidxs::Tuple{Any, Any, Vararg{Any}}) = idxs
reindex(V, idxs::Tuple{DroppedScalar, Any, Vararg{Any}}, subidxs::Tuple{Any}) =
(@_propagate_inbounds_meta; (idxs[1], reindex(V, tail(idxs), subidxs)...))
reindex(V, idxs::Tuple{DroppedScalar, Any, Vararg{Any}}, subidxs::Tuple{Any, Any, Vararg{Any}}) =
(@_propagate_inbounds_meta; (idxs[1], reindex(V, tail(idxs), subidxs)...))
# Parent matrices are re-indexed with two sub-indices
reindex(V, idxs::Tuple{AbstractMatrix}, subidxs::Tuple{Any}) =
(@_propagate_inbounds_meta; (idxs[1][subidxs[1]],))
reindex(V, idxs::Tuple{AbstractMatrix}, subidxs::Tuple{Any, Any}) =
(@_propagate_inbounds_meta; (idxs[1][subidxs[1], subidxs[2]],))
reindex(V, idxs::Tuple{AbstractMatrix, Vararg{Any}}, subidxs::Tuple{Any, Any, Vararg{Any}}) =
(@_propagate_inbounds_meta; (idxs[1][subidxs[1], subidxs[2]], reindex(V, tail(idxs), tail(tail(subidxs)))...))
reindex(V, idxs::Tuple{AbstractMatrix, Vararg{Any}}, subidxs::Tuple{Any}) =
(@_propagate_inbounds_meta; (merge_indexes(V, idxs, subidxs[1]),))
reindex(V, idxs::Tuple{AbstractMatrix, Vararg{Any}}, subidxs::Tuple{Any, Any}) =
(@_propagate_inbounds_meta; (merge_indexes(V, idxs, subidxs),))
reindex(V, idxs::Tuple{AbstractMatrix, Vararg{DroppedScalar}}, subidxs::Tuple{Any}) =
(@_propagate_inbounds_meta; (idxs[1][subidxs[1]], tail(idxs)...))
reindex(V, idxs::Tuple{AbstractMatrix, Vararg{DroppedScalar}}, subidxs::Tuple{Any, Any}) =
(@_propagate_inbounds_meta; (idxs[1][subidxs[1], subidxs[2]], tail(idxs)...))

# In general, we index N-dimensional parent arrays with N indices
@generated function reindex{T,N}(V, idxs::Tuple{AbstractArray{T,N}, Vararg{Any}}, subidxs::Tuple{Vararg{Any}})
if length(subidxs.parameters) >= N
subs = [:(subidxs[$d]) for d in 1:N]
tail = [:(subidxs[$d]) for d in N+1:length(subidxs.parameters)]
:(@_propagate_inbounds_meta; (idxs[1][$(subs...)], reindex(V, tail(idxs), ($(tail...),))...))
elseif length(idxs.parameters) == 1
:(@_propagate_inbounds_meta; (idxs[1][subidxs...],))
elseif all(T->T<:DroppedScalar, idxs.parameters[2:end])
:(@_propagate_inbounds_meta; (idxs[1][subidxs...], tail(idxs)...))
else
:(@_propagate_inbounds_meta; (merge_indexes(V, idxs, subidxs),))
end
end

# In general, we simply re-index the parent indices by the provided ones
getindex(V::SubArray) = (@_propagate_inbounds_meta; getindex(V, 1))
Expand Down
Loading

0 comments on commit 7010952

Please sign in to comment.