Skip to content

Commit

Permalink
improve cat inferrability (#45028)
Browse files Browse the repository at this point in the history
Make `cat` inferrable even if its arguments are not fully constant:
```julia
julia> r = rand(Float32, 56, 56, 64, 1);

julia> f(r) = cat(r, r, dims=(3,))
f (generic function with 1 method)

julia> @inferred f(r);

julia> last(@code_typed f(r))
Array{Float32, 4}
```

After descending into its call graph, I found that constant propagation
is prohibited at `cat_t(::Type{T}, X...; dims)` due to the method instance
heuristic, i.e. its body is considered to be too complex for successful
inlining although it's explicitly annotated as `@inline`.
But for this case, the constant propagation is greatly helpful both for
abstract interpretation and optimization since it can improve the return
type inference.

Since it is not an easy task to improve the method instance heuristic,
which is our primary logic for constant propagation, this commit does
a quick fix by helping inference with the `@constprop` annotation.

There is another issue that currently there is no good way to properly
apply `@constprop`/`@inline` effects to a keyword function (as a note,
this is a general issue of macro annotations on a method definition).
So this commit also changes some internal helper functions of `cat`
so that now they are not keyword ones: the changes are also necessary
for the `@inline` annotation on `cat_t` to be effective to trick
the method instance heuristic.

(cherry picked from commit 65b9be4)
  • Loading branch information
aviatesk authored and KristofferC committed Aug 6, 2022
1 parent 4983135 commit 4b5ea08
Show file tree
Hide file tree
Showing 4 changed files with 24 additions and 32 deletions.
33 changes: 15 additions & 18 deletions base/abstractarray.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1716,23 +1716,16 @@ end
_cs(d, a, b) = (a == b ? a : throw(DimensionMismatch(
"mismatch in dimension $d (expected $a got $b)")))

function dims2cat(::Val{dims}) where dims
if any((0), dims)
throw(ArgumentError("All cat dimensions must be positive integers, but got $dims"))
end
ntuple(in(dims), maximum(dims))
end

dims2cat(::Val{dims}) where dims = dims2cat(dims)
function dims2cat(dims)
if any((0), dims)
throw(ArgumentError("All cat dimensions must be positive integers, but got $dims"))
end
ntuple(in(dims), maximum(dims))
end

_cat(dims, X...) = cat_t(promote_eltypeof(X...), X...; dims=dims)
_cat(dims, X...) = _cat_t(dims, promote_eltypeof(X...), X...)

@inline cat_t(::Type{T}, X...; dims) where {T} = _cat_t(dims, T, X...)
@inline function _cat_t(dims, ::Type{T}, X...) where {T}
catdims = dims2cat(dims)
shape = cat_size_shape(catdims, X...)
Expand All @@ -1742,6 +1735,9 @@ _cat(dims, X...) = cat_t(promote_eltypeof(X...), X...; dims=dims)
end
return __cat(A, shape, catdims, X...)
end
# this version of `cat_t` is not very kind for inference and so its usage should be avoided,
# nevertheless it is here just for compat after https://github.com/JuliaLang/julia/pull/45028
@inline cat_t(::Type{T}, X...; dims) where {T} = _cat_t(dims, T, X...)

# Why isn't this called `__cat!`?
__cat(A, shape, catdims, X...) = __cat_offset!(A, shape, catdims, ntuple(zero, length(shape)), X...)
Expand Down Expand Up @@ -1880,8 +1876,8 @@ julia> reduce(hcat, vs)
"""
hcat(X...) = cat(X...; dims=Val(2))

typed_vcat(::Type{T}, X...) where T = cat_t(T, X...; dims=Val(1))
typed_hcat(::Type{T}, X...) where T = cat_t(T, X...; dims=Val(2))
typed_vcat(::Type{T}, X...) where T = _cat_t(Val(1), T, X...)
typed_hcat(::Type{T}, X...) where T = _cat_t(Val(2), T, X...)

"""
cat(A...; dims)
Expand Down Expand Up @@ -1917,7 +1913,8 @@ julia> cat(true, trues(2,2), trues(4)', dims=(1,2))
```
"""
@inline cat(A...; dims) = _cat(dims, A...)
_cat(catdims, A::AbstractArray{T}...) where {T} = cat_t(T, A...; dims=catdims)
# `@constprop :aggressive` allows `catdims` to be propagated as constant improving return type inference
@constprop :aggressive _cat(catdims, A::AbstractArray{T}...) where {T} = _cat_t(catdims, T, A...)

# The specializations for 1 and 2 inputs are important
# especially when running with --inline=no, see #11158
Expand All @@ -1928,12 +1925,12 @@ hcat(A::AbstractArray) = cat(A; dims=Val(2))
hcat(A::AbstractArray, B::AbstractArray) = cat(A, B; dims=Val(2))
hcat(A::AbstractArray...) = cat(A...; dims=Val(2))

typed_vcat(T::Type, A::AbstractArray) = cat_t(T, A; dims=Val(1))
typed_vcat(T::Type, A::AbstractArray, B::AbstractArray) = cat_t(T, A, B; dims=Val(1))
typed_vcat(T::Type, A::AbstractArray...) = cat_t(T, A...; dims=Val(1))
typed_hcat(T::Type, A::AbstractArray) = cat_t(T, A; dims=Val(2))
typed_hcat(T::Type, A::AbstractArray, B::AbstractArray) = cat_t(T, A, B; dims=Val(2))
typed_hcat(T::Type, A::AbstractArray...) = cat_t(T, A...; dims=Val(2))
typed_vcat(T::Type, A::AbstractArray) = _cat_t(Val(1), T, A)
typed_vcat(T::Type, A::AbstractArray, B::AbstractArray) = _cat_t(Val(1), T, A, B)
typed_vcat(T::Type, A::AbstractArray...) = _cat_t(Val(1), T, A...)
typed_hcat(T::Type, A::AbstractArray) = _cat_t(Val(2), T, A)
typed_hcat(T::Type, A::AbstractArray, B::AbstractArray) = _cat_t(Val(2), T, A, B)
typed_hcat(T::Type, A::AbstractArray...) = _cat_t(Val(2), T, A...)

# 2d horizontal and vertical concatenation

Expand Down
4 changes: 2 additions & 2 deletions stdlib/LinearAlgebra/src/special.jl
Original file line number Diff line number Diff line change
Expand Up @@ -414,14 +414,14 @@ const _TypedDenseConcatGroup{T} = Union{Vector{T}, Adjoint{T,Vector{T}}, Transpo

promote_to_array_type(::Tuple{Vararg{Union{_DenseConcatGroup,UniformScaling}}}) = Matrix

Base._cat(dims, xs::_DenseConcatGroup...) = Base.cat_t(promote_eltype(xs...), xs...; dims=dims)
Base._cat(dims, xs::_DenseConcatGroup...) = Base._cat_t(dims, promote_eltype(xs...), xs...)
vcat(A::Vector...) = Base.typed_vcat(promote_eltype(A...), A...)
vcat(A::_DenseConcatGroup...) = Base.typed_vcat(promote_eltype(A...), A...)
hcat(A::Vector...) = Base.typed_hcat(promote_eltype(A...), A...)
hcat(A::_DenseConcatGroup...) = Base.typed_hcat(promote_eltype(A...), A...)
hvcat(rows::Tuple{Vararg{Int}}, xs::_DenseConcatGroup...) = Base.typed_hvcat(promote_eltype(xs...), rows, xs...)
# For performance, specially handle the case where the matrices/vectors have homogeneous eltype
Base._cat(dims, xs::_TypedDenseConcatGroup{T}...) where {T} = Base.cat_t(T, xs...; dims=dims)
Base._cat(dims, xs::_TypedDenseConcatGroup{T}...) where {T} = Base._cat_t(dims, T, xs...)
vcat(A::_TypedDenseConcatGroup{T}...) where {T} = Base.typed_vcat(T, A...)
hcat(A::_TypedDenseConcatGroup{T}...) where {T} = Base.typed_hcat(T, A...)
hvcat(rows::Tuple{Vararg{Int}}, xs::_TypedDenseConcatGroup{T}...) where {T} = Base.typed_hvcat(T, rows, xs...)
Expand Down
4 changes: 4 additions & 0 deletions test/abstractarray.jl
Original file line number Diff line number Diff line change
Expand Up @@ -733,6 +733,10 @@ function test_cat(::Type{TestAbstractArray})
cat3v(As) = cat(As...; dims=Val(3))
@test @inferred(cat3v(As)) == zeros(2, 2, 2)
@test @inferred(cat(As...; dims=Val((1,2)))) == zeros(4, 4)

r = rand(Float32, 56, 56, 64, 1);
f(r) = cat(r, r, dims=(3,))
@inferred f(r);
end

function test_ind2sub(::Type{TestAbstractArray})
Expand Down
15 changes: 3 additions & 12 deletions test/ambiguous.jl
Original file line number Diff line number Diff line change
Expand Up @@ -172,20 +172,11 @@ using LinearAlgebra, SparseArrays, SuiteSparse
# not using isempty so this prints more information when it fails
@testset "detect_ambiguities" begin
let ambig = Set{Any}(((m1.sig, m2.sig) for (m1, m2) in detect_ambiguities(Core, Base; recursive=true, ambiguous_bottom=false, allowed_undefineds)))
@test isempty(ambig)
expect = []
good = true
while !isempty(ambig)
sigs = pop!(ambig)
i = findfirst(==(sigs), expect)
if i === nothing
println(stderr, "push!(expect, (", sigs[1], ", ", sigs[2], "))")
good = false
continue
end
deleteat!(expect, i)
for (sig1, sig2) in ambig
@test sig1 === sig2 # print this ambiguity
good = false
end
@test isempty(expect)
@test good
end

Expand Down

0 comments on commit 4b5ea08

Please sign in to comment.