Skip to content

Commit

Permalink
Add dot(x,A,y) (#683)
Browse files Browse the repository at this point in the history
* add some dot(x,A,y) methods

* Bump version to 3.2.0

Co-authored-by: Fredrik Ekre <[email protected]>
Co-authored-by: Martin Holters <[email protected]>
  • Loading branch information
3 people committed Dec 27, 2019
1 parent 310219d commit 601e535
Show file tree
Hide file tree
Showing 4 changed files with 183 additions and 1 deletion.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "Compat"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "3.1.0"
version = "3.2.0"

[deps]
Base64 = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
Expand Down
3 changes: 3 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,8 @@ Please check the list below for the specific syntax you need.

## Supported features

* `dot` now has a 3-argument method `dot(x, A, y)` without storing the intermediate result `A*y` ([#32739]). (since Compat 3.2.0)

* `pkgdir(m)` returns the root directory of the package that imported module `m` ([#33128]). (since Compat 3.2.0)

* `filter` can now act on a `Tuple` [#32968]. (since Compat 3.1.0)
Expand Down Expand Up @@ -104,6 +106,7 @@ Note that you should specify the correct minimum version for `Compat` in the
[#29674]: https://github.com/JuliaLang/julia/issues/29674
[#29749]: https://github.com/JuliaLang/julia/issues/29749
[#32628]: https://github.com/JuliaLang/julia/issues/32628
[#32739]: https://github.com/JuliaLang/julia/pull/32739
[#33129]: https://github.com/JuliaLang/julia/issues/33129
[#33568]: https://github.com/JuliaLang/julia/pull/33568
[#33128]: https://github.com/JuliaLang/julia/pull/33128
Expand Down
84 changes: 84 additions & 0 deletions src/Compat.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,8 @@
module Compat

import LinearAlgebra
using LinearAlgebra: Adjoint, Diagonal, Transpose, UniformScaling, RealHermSymComplexHerm

include("compatmacro.jl")

# https://github.com/JuliaLang/julia/pull/29679
Expand Down Expand Up @@ -88,6 +91,87 @@ if VERSION < v"1.3.0-alpha.8"
Base.mod(i::Integer, r::AbstractUnitRange{<:Integer}) = mod(i-first(r), length(r)) + first(r)
end

# https://github.com/JuliaLang/julia/pull/32739
# This omits special methods for more exotic matrix types, Triangular and worse.
if VERSION < v"1.4.0-DEV.92" # 2425ae760fb5151c5c7dd0554e87c5fc9e24de73

# stdlib/LinearAlgebra/src/generic.jl
LinearAlgebra.dot(x, A, y) = LinearAlgebra.dot(x, A*y) # generic fallback

function LinearAlgebra.dot(x::AbstractVector, A::AbstractMatrix, y::AbstractVector)
(axes(x)..., axes(y)...) == axes(A) || throw(DimensionMismatch())
T = typeof(LinearAlgebra.dot(first(x), first(A), first(y)))
s = zero(T)
i₁ = first(eachindex(x))
x₁ = first(x)
@inbounds for j in eachindex(y)
yj = y[j]
if !iszero(yj)
temp = zero(adjoint(A[i₁,j]) * x₁)
@simd for i in eachindex(x)
temp += adjoint(A[i,j]) * x[i]
end
s += LinearAlgebra.dot(temp, yj)
end
end
return s
end
LinearAlgebra.dot(x::AbstractVector, adjA::Adjoint, y::AbstractVector) =
adjoint(LinearAlgebra.dot(y, adjA.parent, x))
LinearAlgebra.dot(x::AbstractVector, transA::Transpose{<:Real}, y::AbstractVector) =
adjoint(LinearAlgebra.dot(y, transA.parent, x))

# stdlib/LinearAlgebra/src/diagonal.jl
function LinearAlgebra.dot(x::AbstractVector, D::Diagonal, y::AbstractVector)
mapreduce(t -> LinearAlgebra.dot(t[1], t[2], t[3]), +, zip(x, D.diag, y))
end

# stdlib/LinearAlgebra/src/symmetric.jl
function LinearAlgebra.dot(x::AbstractVector, A::RealHermSymComplexHerm, y::AbstractVector)
require_one_based_indexing(x, y)
(length(x) == length(y) == size(A, 1)) || throw(DimensionMismatch())
data = A.data
r = zero(eltype(x)) * zero(eltype(A)) * zero(eltype(y))
if A.uplo == 'U'
@inbounds for j = 1:length(y)
r += LinearAlgebra.dot(x[j], real(data[j,j]), y[j])
@simd for i = 1:j-1
Aij = data[i,j]
r += LinearAlgebra.dot(x[i], Aij, y[j]) +
LinearAlgebra.dot(x[j], adjoint(Aij), y[i])
end
end
else # A.uplo == 'L'
@inbounds for j = 1:length(y)
r += LinearAlgebra.dot(x[j], real(data[j,j]), y[j])
@simd for i = j+1:length(y)
Aij = data[i,j]
r += LinearAlgebra.dot(x[i], Aij, y[j]) +
LinearAlgebra.dot(x[j], adjoint(Aij), y[i])
end
end
end
return r
end

# stdlib/LinearAlgebra/src/uniformscaling.jl
LinearAlgebra.dot(x::AbstractVector, J::UniformScaling, y::AbstractVector) =
LinearAlgebra.dot(x, J.λ, y)
LinearAlgebra.dot(x::AbstractVector, a::Number, y::AbstractVector) =
sum(t -> LinearAlgebra.dot(t[1], a, t[2]), zip(x, y))
LinearAlgebra.dot(x::AbstractVector, a::Union{Real,Complex}, y::AbstractVector) =
a*LinearAlgebra.dot(x, y)
end

# https://github.com/JuliaLang/julia/pull/30630
if VERSION < v"1.2.0-DEV.125" # 1da48c2e4028c1514ed45688be727efbef1db884
require_one_based_indexing(A...) = !Base.has_offset_axes(A...) || throw(ArgumentError(
"offset arrays are not supported but got an array with index other than 1"))
# At present this is only used in Compat inside the above dot(x,A,y) functions, #32739
elseif VERSION < v"1.4.0-DEV.92"
using Base: require_one_based_indexing
end

# https://github.com/JuliaLang/julia/pull/33568
if VERSION < v"1.4.0-DEV.329"
Base.:(f, g, h...) = (f g, h...)
Expand Down
95 changes: 95 additions & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,101 @@ end
@test_throws DivideError mod(3, 1:0)
end

using LinearAlgebra

@testset "generalized dot #32739" begin
# stdlib/LinearAlgebra/test/generic.jl
for elty in (Int, Float32, Float64, BigFloat, Complex{Float32}, Complex{Float64}, Complex{BigFloat})
n = 10
if elty <: Int
A = rand(-n:n, n, n)
x = rand(-n:n, n)
y = rand(-n:n, n)
elseif elty <: Real
A = convert(Matrix{elty}, randn(n,n))
x = rand(elty, n)
y = rand(elty, n)
else
A = convert(Matrix{elty}, complex.(randn(n,n), randn(n,n)))
x = rand(elty, n)
y = rand(elty, n)
end
@test dot(x, A, y) dot(A'x, y) *(x', A, y) (x'A)*y
@test dot(x, A', y) dot(A*x, y) *(x', A', y) (x'A')*y
elty <: Real && @test dot(x, transpose(A), y) dot(x, transpose(A)*y) *(x', transpose(A), y) (x'*transpose(A))*y
B = reshape([A], 1, 1)
x = [x]
y = [y]
@test dot(x, B, y) dot(B'x, y)
@test dot(x, B', y) dot(B*x, y)
elty <: Real && @test dot(x, transpose(B), y) dot(x, transpose(B)*y)
end

# stdlib/LinearAlgebra/test/symmetric.jl
n = 10
areal = randn(n,n)/2
aimg = randn(n,n)/2
@testset for eltya in (Float32, Float64, ComplexF32, ComplexF64, BigFloat, Int)
a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(areal, aimg) : areal)
asym = transpose(a) + a # symmetric indefinite
aherm = a' + a # Hermitian indefinite
apos = a' * a # Hermitian positive definite
aposs = apos + transpose(apos) # Symmetric positive definite
ε = εa = eps(abs(float(one(eltya))))
x = randn(n)
y = randn(n)
b = randn(n,n)/2
x = eltya == Int ? rand(1:7, n) : convert(Vector{eltya}, eltya <: Complex ? complex.(x, zeros(n)) : x)
y = eltya == Int ? rand(1:7, n) : convert(Vector{eltya}, eltya <: Complex ? complex.(y, zeros(n)) : y)
b = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(b, zeros(n,n)) : b)

@testset "generalized dot product" begin
for uplo in (:U, :L)
@test dot(x, Hermitian(aherm, uplo), y) dot(x, Hermitian(aherm, uplo)*y) dot(x, Matrix(Hermitian(aherm, uplo)), y)
@test dot(x, Hermitian(aherm, uplo), x) dot(x, Hermitian(aherm, uplo)*x) dot(x, Matrix(Hermitian(aherm, uplo)), x)
end
if eltya <: Real
for uplo in (:U, :L)
@test dot(x, Symmetric(aherm, uplo), y) dot(x, Symmetric(aherm, uplo)*y) dot(x, Matrix(Symmetric(aherm, uplo)), y)
@test dot(x, Symmetric(aherm, uplo), x) dot(x, Symmetric(aherm, uplo)*x) dot(x, Matrix(Symmetric(aherm, uplo)), x)
end
end
end
end

# stdlib/LinearAlgebra/test/uniformscaling.jl
@testset "generalized dot" begin
x = rand(-10:10, 3)
y = rand(-10:10, 3)
λ = rand(-10:10)
J = UniformScaling(λ)
@test dot(x, J, y) == λ*dot(x, y)
end

# stdlib/LinearAlgebra/test/bidiag.jl
# The special method for this is not in Compat #683, so this tests the generic fallback
@testset "generalized dot" begin
for elty in (Float64, ComplexF64)
dv = randn(elty, 5)
ev = randn(elty, 4)
x = randn(elty, 5)
y = randn(elty, 5)
for uplo in (:U, :L)
B = Bidiagonal(dv, ev, uplo)
@test dot(x, B, y) dot(B'x, y) dot(x, Matrix(B), y)
end
end
end

# Diagonal -- no such test in Base.
@testset "diagonal" begin
x = rand(-10:10, 3) .+ im
y = rand(-10:10, 3) .+ im
d = Diagonal(rand(-10:10, 3) .+ im)
@test dot(x,d,y) == dot(x,collect(d),y) == dot(x, d*y)
end
end

# https://github.com/JuliaLang/julia/pull/33568
@testset "function composition" begin
@test (x -> x-2, x -> x-3, x -> x+5)(7) == 7
Expand Down

2 comments on commit 601e535

@martinholters
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/7196

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if Julia TagBot is installed, or can be done manually through the github interface, or via:

git tag -a v3.2.0 -m "<description of version>" 601e535df78d1cdade4f6eed76348a8bf36cf864
git push origin v3.2.0

Please sign in to comment.