Skip to content

Commit

Permalink
build based on 7dd2ab6
Browse files Browse the repository at this point in the history
  • Loading branch information
Documenter.jl committed Dec 29, 2023
1 parent 1b809c4 commit 4b86b6e
Show file tree
Hide file tree
Showing 8 changed files with 68 additions and 65 deletions.
2 changes: 1 addition & 1 deletion dev/.documenter-siteinfo.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"documenter":{"julia_version":"1.9.4","generation_timestamp":"2023-12-26T11:32:05","documenter_version":"1.2.1"}}
{"documenter":{"julia_version":"1.10.0","generation_timestamp":"2023-12-29T11:36:16","documenter_version":"1.2.1"}}
2 changes: 1 addition & 1 deletion dev/examples/pi/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -34,4 +34,4 @@

improved_pi_interval = backward_sum(10^6)

midradius(improved_pi_interval)</code></pre><pre class="documenter-example-output"><code class="nohighlight hljs ansi">(3.141592653589793, 4.787281682183675e-13)</code></pre><section class="footnotes is-size-7"><ul><li class="footnote" id="footnote-1"><a class="tag is-link" href="#citeref-1">1</a>W. Tucker, <a href="https://press.princeton.edu/books/hardcover/9780691147819/validated-numerics"><em>Validated Numerics: A Short Introduction to Rigorous Computations</em></a>, Princeton University Press, 2011.</li></ul></section></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../../manual/api/">« API</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="auto">Automatic (OS)</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.2.1 on <span class="colophon-date" title="Tuesday 26 December 2023 11:32">Tuesday 26 December 2023</span>. Using Julia version 1.9.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
midradius(improved_pi_interval)</code></pre><pre class="documenter-example-output"><code class="nohighlight hljs ansi">(3.141592653589793, 4.787281682183675e-13)</code></pre><section class="footnotes is-size-7"><ul><li class="footnote" id="footnote-1"><a class="tag is-link" href="#citeref-1">1</a>W. Tucker, <a href="https://press.princeton.edu/books/hardcover/9780691147819/validated-numerics"><em>Validated Numerics: A Short Introduction to Rigorous Computations</em></a>, Princeton University Press, 2011.</li></ul></section></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../../manual/api/">« API</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="auto">Automatic (OS)</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.2.1 on <span class="colophon-date" title="Friday 29 December 2023 11:36">Friday 29 December 2023</span>. Using Julia version 1.10.0.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
2 changes: 1 addition & 1 deletion dev/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion dev/intro/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -4,4 +4,4 @@
[a^2, b^2], &amp; 0 \le a \le b, \\
[0, \max(a^2, b^2)], &amp; a \le 0 \le b, \\
[b^2, a^2], &amp; a \le b \le 0.
\end{cases}\]</p><p>Of course, we must round the lower endpoint down and the upper endpoint up to get a guaranteed enclosure of the true result.</p><p>IntervalArithmetic defines such behaviour for a wide set of basic functions, thereby allowing the evaluation of more complex functions such as</p><p class="math-container">\[f(x) = \sin(3x^2 - 2 \cos(1/x))\]</p><h2 id="Applications"><a class="docs-heading-anchor" href="#Applications">Applications</a><a id="Applications-1"></a><a class="docs-heading-anchor-permalink" href="#Applications" title="Permalink"></a></h2><p>To illustrate the use of interval arithmetic, consider the following:</p><pre><code class="language-julia-repl hljs" style="display:block;">julia&gt; using IntervalArithmetic</code><code class="nohighlight hljs ansi" style="display:block;"></code><br/><code class="language-julia-repl hljs" style="display:block;">julia&gt; f(x) = x^2 - 2</code><code class="nohighlight hljs ansi" style="display:block;">f (generic function with 1 method)</code><br/><code class="language-julia-repl hljs" style="display:block;">julia&gt; x = interval(3, 4)</code><code class="nohighlight hljs ansi" style="display:block;">Interval{Float64}(3.0, 4.0, com)</code><br/><code class="language-julia-repl hljs" style="display:block;">julia&gt; f(x)</code><code class="nohighlight hljs ansi" style="display:block;">Interval{Float64}(7.0, 14.0, com, NG)</code></pre><p>Since <code>f(x)</code> does not contain <code>0</code>, the true range of the function <span>$f$</span> over the interval <span>$[3, 4]$</span> is guaranteed not to contain <span>$0$</span>, and hence we obtain the following property.</p><p><strong>Theorem:</strong> <span>$f$</span> has no root in the interval <span>$[3, 4]$</span>.</p><p>This theorem has been obtained using floating-point computations! In fact, we can even extend this to semi-infinite intervals:</p><pre><code class="language-julia-repl hljs" style="display:block;">julia&gt; f(interval(3, Inf))</code><code class="nohighlight hljs ansi" style="display:block;">Interval{Float64}(7.0, Inf, dac, NG)</code></pre><p>Therefore, we have excluded the whole unbounded set <span>$[3, \infty)$</span> from possibly containing roots of <span>$f$</span>.</p><p>Interval arithmetic is the foundation of more powerful and elaborate methods in the field of computer-assisted proofs (see e.g. <a href="https://juliaintervals.github.io/IntervalRootFinding.jl">IntervalRootFinding.jl</a>).</p><p>The interested reader may refer to the following books:</p><ul><li>R. E. Moore, R. B. Kearfott and M. J. Cloud, <a href="https://doi.org/10.1137/1.9780898717716"><em>Introduction to Interval Analysis</em></a>, Society for Industrial and Applied Mathematics (2009)</li><li>W. Tucker, <a href="https://press.princeton.edu/books/hardcover/9780691147819/validated-numerics"><em>Validated Numerics: A Short Introduction to Rigorous Computations</em></a>, Princeton University Press (2010)</li></ul></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../">« Home</a><a class="docs-footer-nextpage" href="../manual/construction/">Constructing intervals »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="auto">Automatic (OS)</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.2.1 on <span class="colophon-date" title="Tuesday 26 December 2023 11:32">Tuesday 26 December 2023</span>. Using Julia version 1.9.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
\end{cases}\]</p><p>Of course, we must round the lower endpoint down and the upper endpoint up to get a guaranteed enclosure of the true result.</p><p>IntervalArithmetic defines such behaviour for a wide set of basic functions, thereby allowing the evaluation of more complex functions such as</p><p class="math-container">\[f(x) = \sin(3x^2 - 2 \cos(1/x))\]</p><h2 id="Applications"><a class="docs-heading-anchor" href="#Applications">Applications</a><a id="Applications-1"></a><a class="docs-heading-anchor-permalink" href="#Applications" title="Permalink"></a></h2><p>To illustrate the use of interval arithmetic, consider the following:</p><pre><code class="language-julia-repl hljs" style="display:block;">julia&gt; using IntervalArithmetic</code><code class="nohighlight hljs ansi" style="display:block;"></code><br/><code class="language-julia-repl hljs" style="display:block;">julia&gt; f(x) = x^2 - 2</code><code class="nohighlight hljs ansi" style="display:block;">f (generic function with 1 method)</code><br/><code class="language-julia-repl hljs" style="display:block;">julia&gt; x = interval(3, 4)</code><code class="nohighlight hljs ansi" style="display:block;">Interval{Float64}(3.0, 4.0, com)</code><br/><code class="language-julia-repl hljs" style="display:block;">julia&gt; f(x)</code><code class="nohighlight hljs ansi" style="display:block;">Interval{Float64}(7.0, 14.0, com, NG)</code></pre><p>Since <code>f(x)</code> does not contain <code>0</code>, the true range of the function <span>$f$</span> over the interval <span>$[3, 4]$</span> is guaranteed not to contain <span>$0$</span>, and hence we obtain the following property.</p><p><strong>Theorem:</strong> <span>$f$</span> has no root in the interval <span>$[3, 4]$</span>.</p><p>This theorem has been obtained using floating-point computations! In fact, we can even extend this to semi-infinite intervals:</p><pre><code class="language-julia-repl hljs" style="display:block;">julia&gt; f(interval(3, Inf))</code><code class="nohighlight hljs ansi" style="display:block;">Interval{Float64}(7.0, Inf, dac, NG)</code></pre><p>Therefore, we have excluded the whole unbounded set <span>$[3, \infty)$</span> from possibly containing roots of <span>$f$</span>.</p><p>Interval arithmetic is the foundation of more powerful and elaborate methods in the field of computer-assisted proofs (see e.g. <a href="https://juliaintervals.github.io/IntervalRootFinding.jl">IntervalRootFinding.jl</a>).</p><p>The interested reader may refer to the following books:</p><ul><li>R. E. Moore, R. B. Kearfott and M. J. Cloud, <a href="https://doi.org/10.1137/1.9780898717716"><em>Introduction to Interval Analysis</em></a>, Society for Industrial and Applied Mathematics (2009)</li><li>W. Tucker, <a href="https://press.princeton.edu/books/hardcover/9780691147819/validated-numerics"><em>Validated Numerics: A Short Introduction to Rigorous Computations</em></a>, Princeton University Press (2010)</li></ul></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../">« Home</a><a class="docs-footer-nextpage" href="../manual/construction/">Constructing intervals »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="auto">Automatic (OS)</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.2.1 on <span class="colophon-date" title="Friday 29 December 2023 11:36">Friday 29 December 2023</span>. Using Julia version 1.10.0.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
Loading

0 comments on commit 4b86b6e

Please sign in to comment.