Skip to content

Commit

Permalink
build based on 6a470a9
Browse files Browse the repository at this point in the history
  • Loading branch information
Documenter.jl committed Sep 23, 2024
1 parent 9974c4f commit 9382022
Show file tree
Hide file tree
Showing 62 changed files with 10,662 additions and 3 deletions.
2 changes: 1 addition & 1 deletion stable
2 changes: 1 addition & 1 deletion v0.6
1 change: 1 addition & 0 deletions v0.6.21/.documenter-siteinfo.json
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"documenter":{"julia_version":"1.10.4","generation_timestamp":"2024-09-23T12:24:39","documenter_version":"1.7.0"}}
54 changes: 54 additions & 0 deletions v0.6.21/api/basic/index.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
<!DOCTYPE html>
<html lang="en"><head><meta charset="UTF-8"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><title>Basic Layers · GraphNeuralNetworks.jl</title><meta name="title" content="Basic Layers · GraphNeuralNetworks.jl"/><meta property="og:title" content="Basic Layers · GraphNeuralNetworks.jl"/><meta property="twitter:title" content="Basic Layers · GraphNeuralNetworks.jl"/><meta name="description" content="Documentation for GraphNeuralNetworks.jl."/><meta property="og:description" content="Documentation for GraphNeuralNetworks.jl."/><meta property="twitter:description" content="Documentation for GraphNeuralNetworks.jl."/><script data-outdated-warner src="../../assets/warner.js"></script><link href="https://cdnjs.cloudflare.com/ajax/libs/lato-font/3.0.0/css/lato-font.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/juliamono/0.050/juliamono.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.2/css/fontawesome.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.2/css/solid.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.2/css/brands.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.8/katex.min.css" rel="stylesheet" type="text/css"/><script>documenterBaseURL="../.."</script><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js" data-main="../../assets/documenter.js"></script><script src="../../search_index.js"></script><script src="../../siteinfo.js"></script><script src="../../../versions.js"></script><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../../assets/themes/catppuccin-mocha.css" data-theme-name="catppuccin-mocha"/><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../../assets/themes/catppuccin-macchiato.css" data-theme-name="catppuccin-macchiato"/><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../../assets/themes/catppuccin-frappe.css" data-theme-name="catppuccin-frappe"/><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../../assets/themes/catppuccin-latte.css" data-theme-name="catppuccin-latte"/><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../../assets/themes/documenter-dark.css" data-theme-name="documenter-dark" data-theme-primary-dark/><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../../assets/themes/documenter-light.css" data-theme-name="documenter-light" data-theme-primary/><script src="../../assets/themeswap.js"></script><link href="../../democards/gridtheme.css" rel="stylesheet" type="text/css"/></head><body><div id="documenter"><nav class="docs-sidebar"><a class="docs-logo" href="../../"><img src="../../assets/logo.svg" alt="GraphNeuralNetworks.jl logo"/></a><div class="docs-package-name"><span class="docs-autofit"><a href="../../">GraphNeuralNetworks.jl</a></span></div><button class="docs-search-query input is-rounded is-small is-clickable my-2 mx-auto py-1 px-2" id="documenter-search-query">Search docs (Ctrl + /)</button><ul class="docs-menu"><li><a class="tocitem" href="../../">Home</a></li><li><span class="tocitem">Graphs</span><ul><li><a class="tocitem" href="../../gnngraph/">Working with GNNGraph</a></li><li><a class="tocitem" href="../../heterograph/">Heterogeneous Graphs</a></li><li><a class="tocitem" href="../../temporalgraph/">Temporal Graphs</a></li></ul></li><li><a class="tocitem" href="../../messagepassing/">Message Passing</a></li><li><a class="tocitem" href="../../models/">Model Building</a></li><li><a class="tocitem" href="../../datasets/">Datasets</a></li><li><a class="tocitem" href="../../tutorials/">Tutorials</a></li><li><span class="tocitem">API Reference</span><ul><li><a class="tocitem" href="../gnngraph/">GNNGraph</a></li><li class="is-active"><a class="tocitem" href>Basic Layers</a><ul class="internal"><li><a class="tocitem" href="#Index"><span>Index</span></a></li><li><a class="tocitem" href="#Docs"><span>Docs</span></a></li></ul></li><li><a class="tocitem" href="../conv/">Convolutional Layers</a></li><li><a class="tocitem" href="../pool/">Pooling Layers</a></li><li><a class="tocitem" href="../messagepassing/">Message Passing</a></li><li><a class="tocitem" href="../heterograph/">Heterogeneous Graphs</a></li><li><a class="tocitem" href="../temporalgraph/">Temporal Graphs</a></li><li><a class="tocitem" href="../utils/">Utils</a></li></ul></li><li><a class="tocitem" href="../../dev/">Developer Notes</a></li><li><a class="tocitem" href="../../gsoc/">Summer Of Code</a></li></ul><div class="docs-version-selector field has-addons"><div class="control"><span class="docs-label button is-static is-size-7">Version</span></div><div class="docs-selector control is-expanded"><div class="select is-fullwidth is-size-7"><select id="documenter-version-selector"></select></div></div></div></nav><div class="docs-main"><header class="docs-navbar"><a class="docs-sidebar-button docs-navbar-link fa-solid fa-bars is-hidden-desktop" id="documenter-sidebar-button" href="#"></a><nav class="breadcrumb"><ul class="is-hidden-mobile"><li><a class="is-disabled">API Reference</a></li><li class="is-active"><a href>Basic Layers</a></li></ul><ul class="is-hidden-tablet"><li class="is-active"><a href>Basic Layers</a></li></ul></nav><div class="docs-right"><a class="docs-navbar-link" href="https://github.com/CarloLucibello/GraphNeuralNetworks.jl" title="View the repository on GitHub"><span class="docs-icon fa-brands"></span><span class="docs-label is-hidden-touch">GitHub</span></a><a class="docs-navbar-link" href="https://github.com/CarloLucibello/GraphNeuralNetworks.jl/blob/master/docs/src/api/basic.md" title="Edit source on GitHub"><span class="docs-icon fa-solid"></span></a><a class="docs-settings-button docs-navbar-link fa-solid fa-gear" id="documenter-settings-button" href="#" title="Settings"></a><a class="docs-article-toggle-button fa-solid fa-chevron-up" id="documenter-article-toggle-button" href="javascript:;" title="Collapse all docstrings"></a></div></header><article class="content" id="documenter-page"><h1 id="Basic-Layers"><a class="docs-heading-anchor" href="#Basic-Layers">Basic Layers</a><a id="Basic-Layers-1"></a><a class="docs-heading-anchor-permalink" href="#Basic-Layers" title="Permalink"></a></h1><h2 id="Index"><a class="docs-heading-anchor" href="#Index">Index</a><a id="Index-1"></a><a class="docs-heading-anchor-permalink" href="#Index" title="Permalink"></a></h2><ul><li><a href="#GraphNeuralNetworks.DotDecoder"><code>GraphNeuralNetworks.DotDecoder</code></a></li><li><a href="#GraphNeuralNetworks.GNNChain"><code>GraphNeuralNetworks.GNNChain</code></a></li><li><a href="#GraphNeuralNetworks.GNNLayer"><code>GraphNeuralNetworks.GNNLayer</code></a></li><li><a href="#GraphNeuralNetworks.WithGraph"><code>GraphNeuralNetworks.WithGraph</code></a></li></ul><h2 id="Docs"><a class="docs-heading-anchor" href="#Docs">Docs</a><a id="Docs-1"></a><a class="docs-heading-anchor-permalink" href="#Docs" title="Permalink"></a></h2><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="GraphNeuralNetworks.DotDecoder" href="#GraphNeuralNetworks.DotDecoder"><code>GraphNeuralNetworks.DotDecoder</code></a><span class="docstring-category">Type</span><span class="is-flex-grow-1 docstring-article-toggle-button" title="Collapse docstring"></span></header><section><div><pre><code class="language-julia hljs">DotDecoder()</code></pre><p>A graph neural network layer that for given input graph <code>g</code> and node features <code>x</code>, returns the dot product <code>x_i ⋅ xj</code> on each edge. </p><p><strong>Examples</strong></p><pre><code class="language-julia-repl hljs">julia&gt; g = rand_graph(5, 6)
GNNGraph:
num_nodes = 5
num_edges = 6

julia&gt; dotdec = DotDecoder()
DotDecoder()

julia&gt; dotdec(g, rand(2, 5))
1×6 Matrix{Float64}:
0.345098 0.458305 0.106353 0.345098 0.458305 0.106353</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/CarloLucibello/GraphNeuralNetworks.jl/blob/6a470a97d18017d73eff38c86aa8897d133cb2a7/src/layers/basic.jl#L187-L209">source</a></section></article><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="GraphNeuralNetworks.GNNChain" href="#GraphNeuralNetworks.GNNChain"><code>GraphNeuralNetworks.GNNChain</code></a><span class="docstring-category">Type</span><span class="is-flex-grow-1 docstring-article-toggle-button" title="Collapse docstring"></span></header><section><div><pre><code class="language-julia hljs">GNNChain(layers...)
GNNChain(name = layer, ...)</code></pre><p>Collects multiple layers / functions to be called in sequence on given input graph and input node features. </p><p>It allows to compose layers in a sequential fashion as <code>Flux.Chain</code> does, propagating the output of each layer to the next one. In addition, <code>GNNChain</code> handles the input graph as well, providing it as a first argument only to layers subtyping the <a href="#GraphNeuralNetworks.GNNLayer"><code>GNNLayer</code></a> abstract type. </p><p><code>GNNChain</code> supports indexing and slicing, <code>m[2]</code> or <code>m[1:end-1]</code>, and if names are given, <code>m[:name] == m[1]</code> etc.</p><p><strong>Examples</strong></p><pre><code class="language-julia-repl hljs">julia&gt; using Flux, GraphNeuralNetworks

julia&gt; m = GNNChain(GCNConv(2=&gt;5),
BatchNorm(5),
x -&gt; relu.(x),
Dense(5, 4))
GNNChain(GCNConv(2 =&gt; 5), BatchNorm(5), #7, Dense(5 =&gt; 4))

julia&gt; x = randn(Float32, 2, 3);

julia&gt; g = rand_graph(3, 6)
GNNGraph:
num_nodes = 3
num_edges = 6

julia&gt; m(g, x)
4×3 Matrix{Float32}:
-0.795592 -0.795592 -0.795592
-0.736409 -0.736409 -0.736409
0.994925 0.994925 0.994925
0.857549 0.857549 0.857549

julia&gt; m2 = GNNChain(enc = m,
dec = DotDecoder())
GNNChain(enc = GNNChain(GCNConv(2 =&gt; 5), BatchNorm(5), #7, Dense(5 =&gt; 4)), dec = DotDecoder())

julia&gt; m2(g, x)
1×6 Matrix{Float32}:
2.90053 2.90053 2.90053 2.90053 2.90053 2.90053

julia&gt; m2[:enc](g, x) == m(g, x)
true</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/CarloLucibello/GraphNeuralNetworks.jl/blob/6a470a97d18017d73eff38c86aa8897d133cb2a7/src/layers/basic.jl#L54-L105">source</a></section></article><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="GraphNeuralNetworks.GNNLayer" href="#GraphNeuralNetworks.GNNLayer"><code>GraphNeuralNetworks.GNNLayer</code></a><span class="docstring-category">Type</span><span class="is-flex-grow-1 docstring-article-toggle-button" title="Collapse docstring"></span></header><section><div><pre><code class="language-julia hljs">abstract type GNNLayer end</code></pre><p>An abstract type from which graph neural network layers are derived.</p><p>See also <a href="#GraphNeuralNetworks.GNNChain"><code>GNNChain</code></a>.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/CarloLucibello/GraphNeuralNetworks.jl/blob/6a470a97d18017d73eff38c86aa8897d133cb2a7/src/layers/basic.jl#L1-L7">source</a></section></article><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="GraphNeuralNetworks.WithGraph" href="#GraphNeuralNetworks.WithGraph"><code>GraphNeuralNetworks.WithGraph</code></a><span class="docstring-category">Type</span><span class="is-flex-grow-1 docstring-article-toggle-button" title="Collapse docstring"></span></header><section><div><pre><code class="language-julia hljs">WithGraph(model, g::GNNGraph; traingraph=false)</code></pre><p>A type wrapping the <code>model</code> and tying it to the graph <code>g</code>. In the forward pass, can only take feature arrays as inputs, returning <code>model(g, x...; kws...)</code>.</p><p>If <code>traingraph=false</code>, the graph&#39;s parameters won&#39;t be part of the <code>trainable</code> parameters in the gradient updates.</p><p><strong>Examples</strong></p><pre><code class="language-julia hljs">g = GNNGraph([1,2,3], [2,3,1])
x = rand(Float32, 2, 3)
model = SAGEConv(2 =&gt; 3)
wg = WithGraph(model, g)
# No need to feed the graph to `wg`
@assert wg(x) == model(g, x)

g2 = GNNGraph([1,1,2,3], [2,4,1,1])
x2 = rand(Float32, 2, 4)
# WithGraph will ignore the internal graph if fed with a new one.
@assert wg(g2, x2) == model(g2, x2)</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/CarloLucibello/GraphNeuralNetworks.jl/blob/6a470a97d18017d73eff38c86aa8897d133cb2a7/src/layers/basic.jl#L14-L39">source</a></section></article></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../gnngraph/">« GNNGraph</a><a class="docs-footer-nextpage" href="../conv/">Convolutional Layers »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.7.0 on <span class="colophon-date" title="Monday 23 September 2024 12:24">Monday 23 September 2024</span>. Using Julia version 1.10.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
Loading

0 comments on commit 9382022

Please sign in to comment.