-
Notifications
You must be signed in to change notification settings - Fork 48
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0567199
commit 5b078ba
Showing
3 changed files
with
137 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
# An example of link prediction using negative and positive samples. | ||
# Ported from https://docs.dgl.ai/tutorials/blitz/4_link_predict.html#sphx-glr-tutorials-blitz-4-link-predict-py | ||
|
||
using Flux | ||
using Flux: onecold, onehotbatch | ||
using Flux.Losses: logitbinarycrossentropy | ||
using GraphNeuralNetworks | ||
using GraphNeuralNetworks: ones_like, zeros_like | ||
using MLDatasets: Cora | ||
using Statistics, Random, LinearAlgebra | ||
using CUDA | ||
using MLJBase: AreaUnderCurve | ||
CUDA.allowscalar(false) | ||
|
||
""" | ||
Transform vector of cartesian indexes into a tuple of vectors containing integers. | ||
""" | ||
ci2t(ci::AbstractVector{<:CartesianIndex}, dims) = ntuple(i -> map(x -> x[i], ci), dims) | ||
|
||
# arguments for the `train` function | ||
Base.@kwdef mutable struct Args | ||
η = 1f-3 # learning rate | ||
epochs = 200 # number of epochs | ||
seed = 17 # set seed > 0 for reproducibility | ||
usecuda = false # if true use cuda (if available) | ||
nhidden = 128 # dimension of hidden features | ||
infotime = 10 # report every `infotime` epochs | ||
end | ||
|
||
struct DotPredictor end | ||
|
||
function (::DotPredictor)(g, x) | ||
z = apply_edges((xi, xj, e) -> sum(xi .* xj, dims=1), g, xi=x, xj=x) | ||
return vec(z) | ||
end | ||
|
||
function train(; kws...) | ||
# args = Args(; kws...) | ||
args = Args() | ||
|
||
args.seed > 0 && Random.seed!(args.seed) | ||
|
||
if args.usecuda && CUDA.functional() | ||
device = gpu | ||
args.seed > 0 && CUDA.seed!(args.seed) | ||
@info "Training on GPU" | ||
else | ||
device = cpu | ||
@info "Training on CPU" | ||
end | ||
|
||
### LOAD DATA | ||
data = Cora.dataset() | ||
g = GNNGraph(data.adjacency_list) |> device | ||
X = data.node_features |> device | ||
|
||
#### SPLIT INTO NEGATIVE AND POSITIVE SAMPLES | ||
# Split edge set for training and testing | ||
s, t = edge_index(g) | ||
eids = randperm(g.num_edges) | ||
test_size = round(Int, g.num_edges * 0.1) | ||
train_size = g.num_edges - test_size | ||
test_pos_s, test_pos_t = s[eids[1:test_size]], t[eids[1:test_size]] | ||
train_pos_s, train_pos_t = s[eids[test_size+1:end]], t[eids[test_size+1:end]] | ||
|
||
# Find all negative edges and split them for training and testing | ||
adj = adjacency_matrix(g) | ||
adj_neg = 1 .- adj - I | ||
neg_s, neg_t = ci2t(findall(adj_neg .> 0), 2) | ||
|
||
neg_eids = randperm(length(neg_s))[1:g.num_edges] | ||
test_neg_s, test_neg_t = neg_s[neg_eids[1:test_size]], neg_t[neg_eids[1:test_size]] | ||
train_neg_s, train_neg_t = neg_s[neg_eids[test_size+1:end]], neg_t[neg_eids[test_size+1:end]] | ||
# train_neg_s, train_neg_t = neg_s[neg_eids[train_size+1:end]], neg_t[neg_eids[train_size+1:end]] | ||
|
||
train_pos_g = GNNGraph((train_pos_s, train_pos_t), num_nodes=g.num_nodes) | ||
train_neg_g = GNNGraph((train_neg_s, train_neg_t), num_nodes=g.num_nodes) | ||
|
||
test_pos_g = GNNGraph((test_pos_s, test_pos_t), num_nodes=g.num_nodes) | ||
test_neg_g = GNNGraph((test_neg_s, test_neg_t), num_nodes=g.num_nodes) | ||
|
||
@show train_pos_g test_pos_g train_neg_g test_neg_g | ||
|
||
### DEFINE MODEL | ||
nin, nhidden = size(X,1), args.nhidden | ||
|
||
model = GNNChain(GCNConv(nin => nhidden, relu), | ||
GCNConv(nhidden => nhidden)) |> device | ||
|
||
pred = DotPredictor() | ||
|
||
ps = Flux.params(model) | ||
opt = ADAM(args.η) | ||
|
||
### LOSS FUNCTION | ||
|
||
function loss(pos_g, neg_g) | ||
h = model(train_pos_g, X) | ||
pos_score = pred(pos_g, h) | ||
neg_score = pred(neg_g, h) | ||
scores = [pos_score; neg_score] | ||
labels = [ones_like(pos_score); zeros_like(neg_score)] | ||
return logitbinarycrossentropy(scores, labels) | ||
end | ||
|
||
function accuracy(pos_g, neg_g) | ||
h = model(train_pos_g, X) | ||
pos_score = pred(pos_g, h) | ||
neg_score = pred(neg_g, h) | ||
scores = [pos_score; neg_score] | ||
labels = [ones_like(pos_score); zeros_like(neg_score)] | ||
return logitbinarycrossentropy(scores, labels) | ||
end | ||
|
||
### LOGGING FUNCTION | ||
function report(epoch) | ||
train_loss = loss(train_pos_g, train_neg_g) | ||
test_loss = loss(test_pos_g, test_neg_g) | ||
println("Epoch: $epoch Train: $(train_loss) Test: $(test_loss)") | ||
end | ||
|
||
### TRAINING | ||
report(0) | ||
for epoch in 1:args.epochs | ||
gs = Flux.gradient(() -> loss(train_pos_g, train_neg_g), ps) | ||
Flux.Optimise.update!(opt, ps, gs) | ||
epoch % args.infotime == 0 && report(epoch) | ||
end | ||
end | ||
|
||
# train() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters