Skip to content

Commit

Permalink
Implement SparseArrays.sparse, with a format kwarg.
Browse files Browse the repository at this point in the history
  • Loading branch information
CarloLucibello authored and maleadt committed Oct 4, 2021
1 parent 179498a commit 030fba3
Show file tree
Hide file tree
Showing 2 changed files with 84 additions and 1 deletion.
49 changes: 48 additions & 1 deletion lib/cusparse/conversions.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,45 @@
# conversion routines between different sparse and dense storage formats

SparseArrays.sparse(::DenseCuArray, args...) = error("CUSPARSE supports multiple sparse formats, use specific constructors instead (e.g. CuSparseMatrixCSC)")
"""
sparse(x::DenseCuMatrix; fmt=:csc)
sparse(I::CuVector, J::CuVector, V::CuVector, [m, n]; fmt=:csc)
Return a sparse cuda matrix, with type determined by `fmt`.
Possible formats are :csc, :csr, :bsr, and :coo.
"""
function SparseArrays.sparse(x::DenseCuMatrix; fmt=:csc)
if fmt == :csc
return CuSparseMatrixCSC(x)
elseif fmt == :csr
return CuSparseMatrixCSR(x)
elseif fmt == :bsr
return CuSparseMatrixBSR(x)
elseif fmt == :coo
return CuSparseMatrixCOO(x)
else
error("Format :$fmt not available, use :csc, :csr, :bsr or :coo.")
end
end

SparseArrays.sparse(I::CuVector, J::CuVector, V::CuVector; kws...) =
sparse(I, J, V, maximum(I), maximum(J); kws...)

SparseArrays.sparse(I::CuVector, J::CuVector, V::CuVector, m, n; kws...) =
sparse(Cint.(I), Cint.(J), V, m, n; kws...)

function SparseArrays.sparse(I::CuVector{Cint}, J::CuVector{Cint}, V::CuVector{Tv}, m, n;
fmt=:csc) where Tv
spcoo = CuSparseMatrixCOO{Tv}(I, J, V, (m, n))
if fmt == :csc
return CuSparseMatrixCSC(spcoo)
elseif fmt == :csr
return CuSparseMatrixCSR(spcoo)
elseif fmt == :coo
return spcoo
else
error("Format :$fmt not available, use :csc, :csr, or :coo.")
end
end


## CSR to CSC
Expand Down Expand Up @@ -238,6 +277,14 @@ function CuSparseMatrixCOO(csr::CuSparseMatrixCSR{Tv}, ind::SparseChar='O') wher
CuSparseMatrixCOO{Tv}(cooRowInd, csr.colVal, csr.nzVal, csr.dims, nnz)
end

### CSC/BST to COO and viceversa

CuSparseMatrixCSC(coo::CuSparseMatrixCOO) = CuSparseMatrixCSC(CuSparseMatrixCSR(coo)) # no direct conversion
CuSparseMatrixCOO(csc::CuSparseMatrixCSC) = CuSparseMatrixCOO(CuSparseMatrixCSR(csc)) # no direct conversion
CuSparseMatrixBSR(coo::CuSparseMatrixCOO, blockdim) = CuSparseMatrixBSR(CuSparseMatrixCSR(coo), blockdim) # no direct conversion
CuSparseMatrixCOO(bsr::CuSparseMatrixBSR) = CuSparseMatrixCOO(CuSparseMatrixCSR(bsr)) # no direct conversion


## sparse to dense, and vice-versa

for (cname,rname,elty) in ((:cusparseScsc2dense, :cusparseScsr2dense, :Float32),
Expand Down
36 changes: 36 additions & 0 deletions test/cusparse/conversions.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
using CUDA.CUSPARSE, SparseArrays

@testset "sparse" begin
n, m = 4, 4
I = [1,2,3] |> cu
J = [2,3,4] |> cu
V = Float32[1,2,3] |> cu

dense = rand(3,3) |> cu

# check defaults
@test sparse(I, J, V) isa CuSparseMatrixCSC
@test sparse(dense) isa CuSparseMatrixCSC

for (fmt, T) in [(:coo, CuSparseMatrixCOO),
(:csc, CuSparseMatrixCSC),
(:csr, CuSparseMatrixCSR),
(:bsr, CuSparseMatrixBSR)
]
if fmt != :bsr # bsr not supported
x = sparse(I, J, V; fmt=fmt)
@test x isa T{Float32}
@test size(x) == (3, 4)

x = sparse(I, J, V, m, n; fmt=fmt)
@test x isa T{Float32}
@test size(x) == (4, 4)
end

if fmt != :coo # dense to COO not implemented
x = sparse(dense; fmt=fmt)
@test x isa T{Float32}
@test collect(x) == collect(dense)
end
end
end

0 comments on commit 030fba3

Please sign in to comment.