-
Notifications
You must be signed in to change notification settings - Fork 24
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
151 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -65,6 +65,7 @@ NormL21 | |
NormLinf | ||
NuclearNorm | ||
SqrNormL2 | ||
TotalVariation1D | ||
``` | ||
|
||
## Penalties and other functions | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
# 1-dimensional Total Variation (times a constant) | ||
|
||
export TotalVariation1D | ||
|
||
""" | ||
** 1-dimensional Total Variation** | ||
TotalVariation1D(λ=1) | ||
With a nonnegative scalar parameter λ, returns the function | ||
```math | ||
f(x) = λ ∑_{i=2}^{n} |x_i - x_{i-1}|. | ||
``` | ||
""" | ||
struct TotalVariation1D{T <: Real} <: ProximableFunction | ||
lambda::T | ||
function TotalVariation1D{T}(lambda::T) where {T <: Real} | ||
if lambda < 0 | ||
error("parameter λ must be nonnegative") | ||
else | ||
new(lambda) | ||
end | ||
end | ||
end | ||
|
||
is_separable(f::TotalVariation1D) = false | ||
is_convex(f::TotalVariation1D) = true | ||
is_positively_homogeneous(f::TotalVariation1D) = true | ||
|
||
TotalVariation1D(lambda::R=1) where {R <: Real} = TotalVariation1D{R}(lambda) | ||
|
||
function (f::TotalVariation1D)(x::AbstractArray) | ||
return f.lambda * norm(x[2:end] - x[1:end-1], 1) | ||
end | ||
|
||
# Condat algorithm | ||
# https://lcondat.github.io/publis/Condat-fast_TV-SPL-2013.pdf | ||
function tvnorm_prox_condat(y::AbstractArray, x::AbstractArray, lambda::Real) | ||
# solves y = arg min_z lambda*sum_k |z_{k+1}-z_k| + 1/2 * ||z-x||^2 | ||
N = length(x) | ||
|
||
k=k0=kmin=kplus=1 | ||
vmin = x[1] - lambda | ||
vmax = x[1] + lambda | ||
umin = lambda | ||
umax = -lambda | ||
|
||
while 0 < 1 | ||
while k == N | ||
if umin < 0 | ||
y[k0:kmin] .= vmin | ||
kmin += 1 | ||
k = k0 = kmin | ||
vmin = x[k]; umin = lambda; | ||
umax = x[k] + lambda - vmax | ||
elseif umax > 0 | ||
y[k0:kplus] .= vmax | ||
kplus +=1 | ||
k=k0=kplus | ||
vmax = x[k]; umax = -lambda; | ||
umin = x[k] - lambda - vmin | ||
else | ||
y[k0:N] .= vmin + umin/(k-k0+1) | ||
return | ||
end | ||
|
||
if k==N | ||
y[N] = vmin + umin | ||
return | ||
end | ||
end | ||
|
||
|
||
if x[k+1] + umin < vmin - lambda | ||
y[k0:kmin] .= vmin | ||
kmin +=1 | ||
k = k0 =kplus =kmin | ||
vmin = x[k]; vmax = x[k] + 2*lambda; | ||
umin = lambda; umax = -lambda; | ||
elseif x[k+1] + umax > vmax + lambda | ||
y[k0:kplus] .= vmax | ||
kplus +=1 | ||
k = k0 =kmin = kplus | ||
vmin = x[k] - 2*lambda; vmax = x[k]; | ||
umin = lambda; umax = -lambda; | ||
else | ||
k +=1 ; | ||
umin = umin + x[k] - vmin | ||
umax = umax + x[k] - vmax | ||
if umin >= lambda | ||
vmin = vmin + (umin-lambda)/(k-k0+1) | ||
umin = lambda; kmin = k; | ||
end | ||
|
||
if umax <= -lambda | ||
vmax += (umax+lambda)/(k-k0+1) | ||
umax = -lambda; kplus = k; | ||
end | ||
end | ||
end | ||
end | ||
|
||
function prox!(y::AbstractArray{T}, f::TotalVariation1D, x::AbstractArray{T}, gamma::Real=1.0) where T <: Real | ||
a = gamma * f.lambda | ||
tvnorm_prox_condat(y, x, a) | ||
return f.lambda * norm(y[2:end] - y[1:end-1], 1) | ||
end | ||
|
||
fun_name(f::TotalVariation1D) = "1D Total Variation" | ||
fun_dom(f::TotalVariation1D) = "AbstractArray{Real}" | ||
fun_expr(f::TotalVariation1D) = "x ↦ λ ∑_{i=2}^{n} |x_i - x_{i-1}|" | ||
fun_params(f::TotalVariation1D) = "λ = $(f.lambda)" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters