-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
11 changed files
with
401 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,223 @@ | ||
# De Marchi, Themelis, "Proximal gradient algorithms under local Lipschitz | ||
# gradient continuity: a convergence and robustness analysis of PANOC", | ||
# arXiv:2112.13000 (2021). | ||
|
||
using Base.Iterators | ||
using ProximalAlgorithms.IterationTools | ||
using ProximalOperators: Zero | ||
using LinearAlgebra | ||
using Printf | ||
|
||
""" | ||
PANOCplusIteration(; <keyword-arguments>) | ||
Instantiate the PANOCplus algorithm (see [1]) for solving optimization problems | ||
of the form | ||
minimize f(Ax) + g(x), | ||
where `f` is locally smooth and `A` is a linear mapping (for example, a matrix). | ||
# Arguments | ||
- `x0`: initial point. | ||
- `f=Zero()`: smooth objective term. | ||
- `A=I`: linear operator (e.g. a matrix). | ||
- `g=Zero()`: proximable objective term. | ||
- `Lf=nothing`: Lipschitz constant of the gradient of x ↦ f(Ax). | ||
- `gamma=nothing`: stepsize to use, defaults to `1/Lf` if not set (but `Lf` is). | ||
- `adaptive=false`: forces the method stepsize to be adaptively adjusted. | ||
- `minimum_gamma=1e-7`: lower bound to `gamma` in case `adaptive == true`. | ||
- `max_backtracks=20`: maximum number of line-search backtracks. | ||
- `directions=LBFGS(5)`: strategy to use to compute line-search directions. | ||
# References | ||
- [1] De Marchi, Themelis, "Proximal gradient algorithms under local Lipschitz | ||
gradient continuity: a convergence and robustness analysis of PANOC", | ||
arXiv:2112.13000 (2021). | ||
""" | ||
|
||
Base.@kwdef struct PANOCplusIteration{R,Tx,Tf,TA,Tg,TLf,Tgamma,D} | ||
f::Tf = Zero() | ||
A::TA = I | ||
g::Tg = Zero() | ||
x0::Tx | ||
alpha::R = real(eltype(x0))(0.95) | ||
beta::R = real(eltype(x0))(0.5) | ||
Lf::TLf = nothing | ||
gamma::Tgamma = Lf === nothing ? nothing : (alpha / Lf) | ||
adaptive::Bool = gamma === nothing | ||
minimum_gamma::R = real(eltype(x0))(1e-7) | ||
max_backtracks::Int = 20 | ||
directions::D = LBFGS(5) | ||
end | ||
|
||
Base.IteratorSize(::Type{<:PANOCplusIteration}) = Base.IsInfinite() | ||
|
||
Base.@kwdef mutable struct PANOCplusState{R,Tx,TAx,TH} | ||
x::Tx # iterate | ||
Ax::TAx # A times x | ||
f_Ax::R # value of smooth term | ||
grad_f_Ax::TAx # gradient of f at Ax | ||
At_grad_f_Ax::Tx # gradient of smooth term | ||
gamma::R # stepsize parameter of forward and backward steps | ||
y::Tx # forward point | ||
z::Tx # forward-backward point | ||
g_z::R # value of nonsmooth term (at z) | ||
res::Tx # fixed-point residual at iterate (= x - z) | ||
H::TH # variable metric | ||
tau::R = zero(gamma) | ||
x_prev::Tx = similar(x) | ||
res_prev::Tx = similar(x) | ||
d::Tx = similar(x) | ||
Ad::TAx = similar(Ax) | ||
x_d::Tx = similar(x) | ||
Ax_d::TAx = similar(Ax) | ||
f_Ax_d::R = zero(real(eltype(x))) | ||
grad_f_Ax_d::TAx = similar(Ax) | ||
At_grad_f_Ax_d::Tx = similar(x) | ||
z_curr::Tx = similar(x) | ||
Az::TAx = similar(Ax) | ||
grad_f_Az::TAx = similar(Ax) | ||
At_grad_f_Az::Tx = similar(x) | ||
end | ||
|
||
f_model(iter::PANOCplusIteration, state::PANOCplusState) = f_model(state.f_Ax, state.At_grad_f_Ax, state.res, iter.alpha / state.gamma) | ||
|
||
function Base.iterate(iter::PANOCplusIteration{R}) where {R} | ||
x = copy(iter.x0) | ||
Ax = iter.A * x | ||
grad_f_Ax, f_Ax = gradient(iter.f, Ax) | ||
gamma = iter.gamma === nothing ? iter.alpha / lower_bound_smoothness_constant(iter.f, iter.A, x, grad_f_Ax) : iter.gamma | ||
At_grad_f_Ax = iter.A' * grad_f_Ax | ||
y = x - gamma .* At_grad_f_Ax | ||
z, g_z = prox(iter.g, y, gamma) | ||
state = PANOCplusState( | ||
x=x, Ax=Ax, f_Ax=f_Ax, grad_f_Ax=grad_f_Ax, At_grad_f_Ax=At_grad_f_Ax, | ||
gamma=gamma, y=y, z=z, g_z=g_z, res=x-z, H=initialize(iter.directions, x), | ||
) | ||
if (iter.gamma === nothing || iter.adaptive == true) | ||
state.gamma, state.g_z, f_Az, f_Az_upp = backtrack_stepsize!( | ||
state.gamma, iter.f, iter.A, iter.g, | ||
state.x, state.f_Ax, state.At_grad_f_Ax, state.y, state.z, state.g_z, state.res, | ||
state.Az, state.grad_f_Az, | ||
alpha = iter.alpha, minimum_gamma = iter.minimum_gamma, | ||
) | ||
end | ||
return state, state | ||
end | ||
|
||
set_next_direction!(::QuasiNewtonStyle, ::PANOCplusIteration, state::PANOCplusState) = mul!(state.d, state.H, -state.res) | ||
set_next_direction!(::NoAccelerationStyle, ::PANOCplusIteration, state::PANOCplusState) = state.d .= .-state.res | ||
set_next_direction!(iter::PANOCplusIteration, state::PANOCplusState) = set_next_direction!(acceleration_style(typeof(iter.directions)), iter, state) | ||
|
||
update_direction_state!(::QuasiNewtonStyle, ::PANOCplusIteration, state::PANOCplusState) = update!(state.H, state.x - state.x_prev, state.res - state.res_prev) | ||
update_direction_state!(::NoAccelerationStyle, ::PANOCplusIteration, state::PANOCplusState) = return | ||
update_direction_state!(iter::PANOCplusIteration, state::PANOCplusState) = update_direction_state!(acceleration_style(typeof(iter.directions)), iter, state) | ||
|
||
reset_direction_state!(::QuasiNewtonStyle, ::PANOCplusIteration, state::PANOCplusState) = reset!(state.H) | ||
reset_direction_state!(::NoAccelerationStyle, ::PANOCplusIteration, state::PANOCplusState) = return | ||
reset_direction_state!(iter::PANOCplusIteration, state::PANOCplusState) = reset_direction_state!(acceleration_style(typeof(iter.directions)), iter, state) | ||
|
||
function Base.iterate(iter::PANOCplusIteration{R}, state::PANOCplusState) where R | ||
f_Az, a, b, c = R(Inf), R(Inf), R(Inf), R(Inf) | ||
|
||
# store iterate and residual for metric update later on | ||
state.x_prev .= state.x | ||
state.res_prev .= state.res | ||
|
||
# compute FBE | ||
FBE_x = f_model(iter, state) + state.g_z | ||
|
||
sigma = iter.beta * (0.5 / state.gamma) * (1 - iter.alpha) | ||
tol = 10 * eps(R) * (1 + abs(FBE_x)) | ||
threshold = FBE_x - sigma * norm(state.res)^2 + tol | ||
|
||
tau_backtracks = 0 | ||
can_update_direction = true | ||
|
||
while true | ||
|
||
if can_update_direction | ||
# compute direction | ||
set_next_direction!(iter, state) | ||
# backtrack tau 1 → 0 | ||
state.tau = R(1) | ||
state.x .= state.x_prev .+ state.d | ||
else | ||
state.x .= (1 - state.tau) * (state.x_prev .- state.res_prev) + state.tau * (state.x_prev .+ state.d) | ||
end | ||
|
||
mul!(state.Ax, iter.A, state.x) | ||
state.f_Ax = gradient!(state.grad_f_Ax, iter.f, state.Ax) | ||
mul!(state.At_grad_f_Ax, adjoint(iter.A), state.grad_f_Ax) | ||
|
||
state.y .= state.x .- state.gamma .* state.At_grad_f_Ax | ||
state.g_z = prox!(state.z, iter.g, state.y, state.gamma) | ||
state.res .= state.x .- state.z | ||
|
||
f_Az_upp = f_model(iter, state) | ||
|
||
if (iter.gamma === nothing || iter.adaptive == true) | ||
mul!(state.Az, iter.A, state.z) | ||
f_Az = gradient!(state.grad_f_Az, iter.f, state.Az) | ||
tol = 10 * eps(R) * (1 + abs(f_Az)) | ||
if f_Az > f_Az_upp + tol && state.gamma >= iter.minimum_gamma | ||
state.gamma *= 0.5 | ||
if state.gamma < iter.minimum_gamma | ||
@warn "stepsize `gamma` became too small ($(state.gamma))" | ||
end | ||
can_update_direction = true | ||
reset_direction_state!(iter, state) | ||
continue | ||
end | ||
end | ||
|
||
FBE_x_new = f_Az_upp + state.g_z | ||
if FBE_x_new <= threshold | ||
# update metric | ||
update_direction_state!(iter, state) | ||
return state, state | ||
end | ||
state.tau *= 0.5 | ||
if tau_backtracks > iter.max_backtracks | ||
@warn "stepsize `tau` became too small ($(state.tau))" | ||
return nothing | ||
end | ||
tau_backtracks += 1 | ||
can_update_direction = false | ||
|
||
end | ||
|
||
end | ||
|
||
# Solver | ||
|
||
struct PANOCplus{R, K} | ||
maxit::Int | ||
tol::R | ||
verbose::Bool | ||
freq::Int | ||
kwargs::K | ||
end | ||
|
||
function (solver::PANOCplus)(x0; kwargs...) | ||
stop(state::PANOCplusState) = norm(state.res, Inf) / state.gamma <= solver.tol | ||
disp((it, state)) = @printf( | ||
"%5d | %.3e | %.3e | %.3e\n", | ||
it, | ||
state.gamma, | ||
norm(state.res, Inf) / state.gamma, | ||
state.tau, | ||
) | ||
iter = PANOCplusIteration(; x0=x0, solver.kwargs..., kwargs...) | ||
iter = take(halt(iter, stop), solver.maxit) | ||
iter = enumerate(iter) | ||
if solver.verbose | ||
iter = tee(sample(iter, solver.freq), disp) | ||
end | ||
num_iters, state_final = loop(iter) | ||
return state_final.z, num_iters | ||
end | ||
|
||
PANOCplus(; maxit=1_000, tol=1e-8, verbose=false, freq=10, kwargs...) = | ||
PANOCplus(maxit, tol, verbose, freq, kwargs) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.