-
Notifications
You must be signed in to change notification settings - Fork 16
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Enzyme error in nested jacobian call #388
Comments
Hi, thanks for reporting this! I can reproduce the bug, but in my console there's an LLVM blurb and then it dies immediately, which makes debugging harder. Did you also encounter such behavior? |
No, console is fine in my case (on a linux server). Ver:
|
@wsmoses sorry for the ping, any way you could decrypt this error message? |
Hm, can you make a reproducer using Enzyme directly to see what’s up?
…On Mon, Jul 29, 2024 at 5:50 PM Guillaume Dalle ***@***.***> wrote:
@wsmoses <https://github.com/wsmoses> sorry for the ping, any way you
could decrypt this error message?
—
Reply to this email directly, view it on GitHub
<#388 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AAJTUXEU7NFXJBZCUSCULY3ZO22IRAVCNFSM6AAAAABLTNSBS6VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDENJXGA3DSOBZGY>
.
You are receiving this because you were mentioned.Message ID:
***@***.***>
|
This is not exactly what DI does (it prepares the using Enzyme, LinearAlgebra
X = rand(Float32, 1, 10)
u(x) = @. x^3
ux(x) = begin
t = Enzyme.jacobian(Enzyme.Forward, u, x)
t |> diag |> permutedims
end
uxx(x) = begin
t = Enzyme.jacobian(Enzyme.Forward, ux, x)
t |> diag |> permutedims
end
u(X)
ux(X)
uxx(X) Error: julia> uxx(X)
ERROR: Attempting to call an indirect active function whose runtime value is inactive:
Backtrace
Stacktrace:
[1] macro expansion
@ ~/.julia/packages/Enzyme/YDcYf/src/compiler.jl:6658
[2] enzyme_call
@ ~/.julia/packages/Enzyme/YDcYf/src/compiler.jl:6258
[3] ForwardModeThunk
@ ~/.julia/packages/Enzyme/YDcYf/src/compiler.jl:6138
[4] autodiff
@ ~/.julia/packages/Enzyme/YDcYf/src/Enzyme.jl:427
[5] autodiff
@ ~/.julia/packages/Enzyme/YDcYf/src/Enzyme.jl:326
[6] #jacobian#100
@ ~/.julia/packages/Enzyme/YDcYf/src/Enzyme.jl:1191
[7] #jacobian#100
@ ~/.julia/packages/Enzyme/YDcYf/src/Enzyme.jl:0
Stacktrace:
[1] macro expansion
@ ~/.julia/packages/Enzyme/YDcYf/src/compiler.jl:6658 [inlined]
[2] enzyme_call
@ ~/.julia/packages/Enzyme/YDcYf/src/compiler.jl:6258 [inlined]
[3] ForwardModeThunk
@ ~/.julia/packages/Enzyme/YDcYf/src/compiler.jl:6138 [inlined]
[4] autodiff
@ ~/.julia/packages/Enzyme/YDcYf/src/Enzyme.jl:427 [inlined]
[5] autodiff
@ ~/.julia/packages/Enzyme/YDcYf/src/Enzyme.jl:326 [inlined]
[6] #jacobian#100
@ ~/.julia/packages/Enzyme/YDcYf/src/Enzyme.jl:1191 [inlined]
[7] fwddiffe10julia__jacobian_100_5017_inner_1wrap
@ ~/.julia/packages/Enzyme/YDcYf/src/Enzyme.jl:0
[8] macro expansion
@ ~/.julia/packages/Enzyme/YDcYf/src/compiler.jl:6658 [inlined]
[9] enzyme_call
@ ~/.julia/packages/Enzyme/YDcYf/src/compiler.jl:6258 [inlined]
[10] ForwardModeThunk
@ ~/.julia/packages/Enzyme/YDcYf/src/compiler.jl:6138 [inlined]
[11] runtime_generic_fwd(activity::Type{…}, width::Val{…}, RT::Val{…}, f::Enzyme.var"##jacobian#100", df::Nothing, df_2::Nothing, df_3::Nothing, df_4::Nothing, df_5::Nothing, df_6::Nothing, df_7::Nothing, df_8::Nothing, df_9::Nothing, df_10::Nothing, primal_1::NTuple{…}, shadow_1_1::NTuple{…}, shadow_1_2::NTuple{…}, shadow_1_3::NTuple{…}, shadow_1_4::NTuple{…}, shadow_1_5::NTuple{…}, shadow_1_6::NTuple{…}, shadow_1_7::NTuple{…}, shadow_1_8::NTuple{…}, shadow_1_9::NTuple{…}, shadow_1_10::NTuple{…}, primal_2::typeof(jacobian), shadow_2_1::Nothing, shadow_2_2::Nothing, shadow_2_3::Nothing, shadow_2_4::Nothing, shadow_2_5::Nothing, shadow_2_6::Nothing, shadow_2_7::Nothing, shadow_2_8::Nothing, shadow_2_9::Nothing, shadow_2_10::Nothing, primal_3::ForwardMode{…}, shadow_3_1::Nothing, shadow_3_2::Nothing, shadow_3_3::Nothing, shadow_3_4::Nothing, shadow_3_5::Nothing, shadow_3_6::Nothing, shadow_3_7::Nothing, shadow_3_8::Nothing, shadow_3_9::Nothing, shadow_3_10::Nothing, primal_4::typeof(u), shadow_4_1::Nothing, shadow_4_2::Nothing, shadow_4_3::Nothing, shadow_4_4::Nothing, shadow_4_5::Nothing, shadow_4_6::Nothing, shadow_4_7::Nothing, shadow_4_8::Nothing, shadow_4_9::Nothing, shadow_4_10::Nothing, primal_5::Matrix{…}, shadow_5_1::Matrix{…}, shadow_5_2::Matrix{…}, shadow_5_3::Matrix{…}, shadow_5_4::Matrix{…}, shadow_5_5::Matrix{…}, shadow_5_6::Matrix{…}, shadow_5_7::Matrix{…}, shadow_5_8::Matrix{…}, shadow_5_9::Matrix{…}, shadow_5_10::Matrix{…})
@ Enzyme.Compiler ~/.julia/packages/Enzyme/YDcYf/src/rules/jitrules.jl:210
[12] jacobian
@ ~/.julia/packages/Enzyme/YDcYf/src/Enzyme.jl:1187 [inlined]
[13] ux
@ ~/Work/GitHub/Julia/DifferentiationInterface.jl/DifferentiationInterface/test/playground.jl:7 [inlined]
[14] fwddiffe10julia_ux_4480wrap
@ ~/Work/GitHub/Julia/DifferentiationInterface.jl/DifferentiationInterface/test/playground.jl:0
[15] macro expansion
@ ~/.julia/packages/Enzyme/YDcYf/src/compiler.jl:6658 [inlined]
[16] enzyme_call
@ ~/.julia/packages/Enzyme/YDcYf/src/compiler.jl:6258 [inlined]
[17] ForwardModeThunk
@ ~/.julia/packages/Enzyme/YDcYf/src/compiler.jl:6138 [inlined]
[18] autodiff(::ForwardMode{…}, f::Const{…}, ::Type{…}, args::BatchDuplicated{…})
@ Enzyme ~/.julia/packages/Enzyme/YDcYf/src/Enzyme.jl:427
[19] autodiff
@ ~/.julia/packages/Enzyme/YDcYf/src/Enzyme.jl:326 [inlined]
[20] jacobian(::ForwardMode{FFIABI}, f::Function, x::Matrix{Float32}; shadow::NTuple{10, Matrix{Float32}})
@ Enzyme ~/.julia/packages/Enzyme/YDcYf/src/Enzyme.jl:1191
[21] jacobian
@ ~/.julia/packages/Enzyme/YDcYf/src/Enzyme.jl:1187 [inlined]
[22] uxx(x::Matrix{Float32})
@ Main ~/Work/GitHub/Julia/DifferentiationInterface.jl/DifferentiationInterface/test/playground.jl:11
[23] top-level scope
@ ~/Work/GitHub/Julia/DifferentiationInterface.jl/DifferentiationInterface/test/playground.jl:17
Some type information was truncated. Use `show(err)` to see complete types. |
So I think here the issue is that the inner call isn’t using deferred. Enzyme really should auto upgrade inner calls to deferred but getting that over the line needs a bit of abstractinterpreter skill that I personally don’t have. |
Theoretically that's what using DifferentiationInterface, Enzyme, LinearAlgebra
const DI = DifferentiationInterface
X = rand(Float32, 1, 10)
u(x) = @. x^3
ux(x) = begin
t = DI.jacobian(u, DI.nested(AutoEnzyme(mode=Enzyme.Forward)), x)
t |> diag |> permutedims
end
uxx(x) = begin
t = DI.jacobian(ux, AutoEnzyme(mode=Enzyme.Forward), x)
t |> diag |> permutedims
end
u(X)
ux(X)
uxx(X) |
Hm can you post the error message and corresponding enzyme calls again (sorry I'm not doing this to be annoying, but to see if there's something weird about how you're calling things that would trigger) |
As I said my console crashes and closes before I can see the error. Maybe it's a VScode extension thing, I'll see if it still happens outside of it |
This works on the current main branch of DI (probably thanks to the latest version of Enzyme which removes the need for julia> using DifferentiationInterface, Enzyme, LinearAlgebra
Precompiling DifferentiationInterface
2 dependencies successfully precompiled in 3 seconds. 8 already precompiled.
Precompiling DifferentiationInterfaceEnzymeExt
1 dependency successfully precompiled in 1 seconds. 30 already precompiled.
julia> const DI = DifferentiationInterface
DifferentiationInterface
julia> X = rand(Float32, 1, 10)
1×10 Matrix{Float32}:
0.604374 0.31886 0.28881 0.602471 0.73593 0.950794 0.891673 0.805122 0.433847 0.870221
julia> u(x) = @. x^3
u (generic function with 1 method)
julia> ux(x) = begin
t = DI.jacobian(u, AutoEnzyme(), x)
t |> diag |> permutedims
end
ux (generic function with 1 method)
julia> uxx(x) = begin
t = DI.jacobian(ux, AutoEnzyme(), x)
t |> diag |> permutedims
end
uxx (generic function with 1 method)
julia> u(X)
1×10 Matrix{Float32}:
0.220759 0.0324189 0.02409 0.218679 0.398575 0.859527 0.708951 0.521897 0.0816599 0.659006
julia> ux(X)
1×10 Matrix{Float32}:
1.09581 0.305014 0.250233 1.08891 1.62478 2.71203 2.38524 1.94466 0.564669 2.27186
julia> uxx(X)
1×10 Matrix{Float32}:
3.62625 1.91316 1.73286 3.61482 4.41558 5.70476 5.35004 4.83073 2.60308 5.22133 |
Hi @gdalle
I'm having problems trying to do nested jacobian calculations. This might be related to #345
MWE:
Info:
The text was updated successfully, but these errors were encountered: