Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Move SparseArrays support to an extension #638

Merged
merged 1 commit into from
Oct 17, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 9 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,12 +1,18 @@
name = "ChainRulesCore"
uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
version = "1.17.0"
version = "1.18.0"

[deps]
Compat = "34da2185-b29b-5c13-b0c7-acf172513d20"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"

[weakdeps]
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"

[extensions]
ChainRulesCoreSparseArraysExt = "SparseArrays"

[compat]
BenchmarkTools = "0.5"
Compat = "2, 3, 4"
Expand All @@ -19,8 +25,9 @@ julia = "1.6"
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
FiniteDifferences = "26cc04aa-876d-5657-8c51-4c34ba976000"
OffsetArrays = "6fe1bfb0-de20-5000-8ca7-80f57d26f881"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]
test = ["Test", "BenchmarkTools", "FiniteDifferences", "OffsetArrays", "StaticArrays"]
test = ["Test", "BenchmarkTools", "FiniteDifferences", "OffsetArrays", "SparseArrays", "StaticArrays"]
103 changes: 103 additions & 0 deletions ext/ChainRulesCoreSparseArraysExt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
module ChainRulesCoreSparseArraysExt

using ChainRulesCore
using ChainRulesCore: project_type, _projection_mismatch
using SparseArrays: SparseVector, SparseMatrixCSC, nzrange, rowvals

ChainRulesCore.is_inplaceable_destination(::SparseVector) = true
ChainRulesCore.is_inplaceable_destination(::SparseMatrixCSC) = true

# Word from on high is that we should regard all un-stored values of sparse arrays as
# structural zeros. Thus ProjectTo needs to store nzind, and get only those.
# This implementation very naiive, can probably be made more efficient.

function ChainRulesCore.ProjectTo(x::SparseVector{T}) where {T<:Number}
return ProjectTo{SparseVector}(;
element=ProjectTo(zero(T)), nzind=x.nzind, axes=axes(x)
)
end
function (project::ProjectTo{SparseVector})(dx::AbstractArray)
dy = if axes(dx) == project.axes
dx
else
if size(dx, 1) != length(project.axes[1])
throw(_projection_mismatch(project.axes, size(dx)))
end
reshape(dx, project.axes)
end
nzval = map(i -> project.element(dy[i]), project.nzind)
return SparseVector(length(dx), project.nzind, nzval)
end
function (project::ProjectTo{SparseVector})(dx::SparseVector)
if size(dx) != map(length, project.axes)
throw(_projection_mismatch(project.axes, size(dx)))

Check warning on line 33 in ext/ChainRulesCoreSparseArraysExt.jl

View check run for this annotation

Codecov / codecov/patch

ext/ChainRulesCoreSparseArraysExt.jl#L33

Added line #L33 was not covered by tests
end
# When sparsity pattern is unchanged, all the time is in checking this,
# perhaps some simple hash/checksum might be good enough?
samepattern = project.nzind == dx.nzind
# samepattern = length(project.nzind) == length(dx.nzind)
if eltype(dx) <: project_type(project.element) && samepattern
return dx
elseif samepattern
nzval = map(project.element, dx.nzval)
SparseVector(length(dx), dx.nzind, nzval)
else
nzind = project.nzind
# Or should we intersect? Can this exploit sorting?
# nzind = intersect(project.nzind, dx.nzind)
nzval = map(i -> project.element(dx[i]), nzind)
return SparseVector(length(dx), nzind, nzval)
end
end

function ChainRulesCore.ProjectTo(x::SparseMatrixCSC{T}) where {T<:Number}
return ProjectTo{SparseMatrixCSC}(;
element=ProjectTo(zero(T)),
axes=axes(x),
rowval=rowvals(x),
nzranges=nzrange.(Ref(x), axes(x, 2)),
colptr=x.colptr,
)
end
# You need not really store nzranges, you can get them from colptr -- TODO
# nzrange(S::AbstractSparseMatrixCSC, col::Integer) = getcolptr(S)[col]:(getcolptr(S)[col+1]-1)
function (project::ProjectTo{SparseMatrixCSC})(dx::AbstractArray)
dy = if axes(dx) == project.axes
dx
else
if size(dx) != (length(project.axes[1]), length(project.axes[2]))
throw(_projection_mismatch(project.axes, size(dx)))
end
reshape(dx, project.axes)
end
nzval = Vector{project_type(project.element)}(undef, length(project.rowval))
k = 0
for col in project.axes[2]
for i in project.nzranges[col]
row = project.rowval[i]
val = dy[row, col]
nzval[k += 1] = project.element(val)
end
end
m, n = map(length, project.axes)
return SparseMatrixCSC(m, n, project.colptr, project.rowval, nzval)
end

function (project::ProjectTo{SparseMatrixCSC})(dx::SparseMatrixCSC)
if size(dx) != map(length, project.axes)
throw(_projection_mismatch(project.axes, size(dx)))

Check warning on line 88 in ext/ChainRulesCoreSparseArraysExt.jl

View check run for this annotation

Codecov / codecov/patch

ext/ChainRulesCoreSparseArraysExt.jl#L88

Added line #L88 was not covered by tests
end
samepattern = dx.colptr == project.colptr && dx.rowval == project.rowval
# samepattern = length(dx.colptr) == length(project.colptr) && dx.colptr[end] == project.colptr[end]
if eltype(dx) <: project_type(project.element) && samepattern
return dx
elseif samepattern
nzval = map(project.element, dx.nzval)
m, n = size(dx)
return SparseMatrixCSC(m, n, dx.colptr, dx.rowval, nzval)
else
invoke(project, Tuple{AbstractArray}, dx)
end
end

end # module
6 changes: 5 additions & 1 deletion src/ChainRulesCore.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@ module ChainRulesCore
using Base.Broadcast: broadcasted, Broadcasted, broadcastable, materialize, materialize!
using Base.Meta
using LinearAlgebra
using SparseArrays: SparseVector, SparseMatrixCSC
using Compat: hasfield, hasproperty

export frule, rrule # core function
Expand Down Expand Up @@ -36,4 +35,9 @@ include("ignore_derivatives.jl")

include("deprecated.jl")

# SparseArrays support on Julia < 1.9
if !isdefined(Base, :get_extension)
include("../ext/ChainRulesCoreSparseArraysExt.jl")
end

end # module
3 changes: 0 additions & 3 deletions src/accumulation.jl
Original file line number Diff line number Diff line change
Expand Up @@ -56,9 +56,6 @@ is_inplaceable_destination(::Any) = false
is_inplaceable_destination(::Array) = true
is_inplaceable_destination(:: Array{<:Integer}) = false

is_inplaceable_destination(::SparseVector) = true
is_inplaceable_destination(::SparseMatrixCSC) = true

function is_inplaceable_destination(x::SubArray)
alpha = is_inplaceable_destination(parent(x))
beta = x.indices isa Tuple{Vararg{Union{Integer, Base.Slice, UnitRange}}}
Expand Down
98 changes: 0 additions & 98 deletions src/projection.jl
Original file line number Diff line number Diff line change
Expand Up @@ -515,101 +515,3 @@ function (project::ProjectTo{Tridiagonal})(dx::AbstractArray)
return Tridiagonal(dy)
end
# Note that backing(::Tridiagonal) doesn't work, https://github.com/JuliaDiff/ChainRulesCore.jl/issues/392

#####
##### `SparseArrays`
#####

using SparseArrays
# Word from on high is that we should regard all un-stored values of sparse arrays as
# structural zeros. Thus ProjectTo needs to store nzind, and get only those.
# This implementation very naiive, can probably be made more efficient.

function ProjectTo(x::SparseVector{T}) where {T<:Number}
return ProjectTo{SparseVector}(;
element=ProjectTo(zero(T)), nzind=x.nzind, axes=axes(x)
)
end
function (project::ProjectTo{SparseVector})(dx::AbstractArray)
dy = if axes(dx) == project.axes
dx
else
if size(dx, 1) != length(project.axes[1])
throw(_projection_mismatch(project.axes, size(dx)))
end
reshape(dx, project.axes)
end
nzval = map(i -> project.element(dy[i]), project.nzind)
return SparseVector(length(dx), project.nzind, nzval)
end
function (project::ProjectTo{SparseVector})(dx::SparseVector)
if size(dx) != map(length, project.axes)
throw(_projection_mismatch(project.axes, size(dx)))
end
# When sparsity pattern is unchanged, all the time is in checking this,
# perhaps some simple hash/checksum might be good enough?
samepattern = project.nzind == dx.nzind
# samepattern = length(project.nzind) == length(dx.nzind)
if eltype(dx) <: project_type(project.element) && samepattern
return dx
elseif samepattern
nzval = map(project.element, dx.nzval)
SparseVector(length(dx), dx.nzind, nzval)
else
nzind = project.nzind
# Or should we intersect? Can this exploit sorting?
# nzind = intersect(project.nzind, dx.nzind)
nzval = map(i -> project.element(dx[i]), nzind)
return SparseVector(length(dx), nzind, nzval)
end
end

function ProjectTo(x::SparseMatrixCSC{T}) where {T<:Number}
return ProjectTo{SparseMatrixCSC}(;
element=ProjectTo(zero(T)),
axes=axes(x),
rowval=rowvals(x),
nzranges=nzrange.(Ref(x), axes(x, 2)),
colptr=x.colptr,
)
end
# You need not really store nzranges, you can get them from colptr -- TODO
# nzrange(S::AbstractSparseMatrixCSC, col::Integer) = getcolptr(S)[col]:(getcolptr(S)[col+1]-1)
function (project::ProjectTo{SparseMatrixCSC})(dx::AbstractArray)
dy = if axes(dx) == project.axes
dx
else
if size(dx) != (length(project.axes[1]), length(project.axes[2]))
throw(_projection_mismatch(project.axes, size(dx)))
end
reshape(dx, project.axes)
end
nzval = Vector{project_type(project.element)}(undef, length(project.rowval))
k = 0
for col in project.axes[2]
for i in project.nzranges[col]
row = project.rowval[i]
val = dy[row, col]
nzval[k += 1] = project.element(val)
end
end
m, n = map(length, project.axes)
return SparseMatrixCSC(m, n, project.colptr, project.rowval, nzval)
end

function (project::ProjectTo{SparseMatrixCSC})(dx::SparseMatrixCSC)
if size(dx) != map(length, project.axes)
throw(_projection_mismatch(project.axes, size(dx)))
end
samepattern = dx.colptr == project.colptr && dx.rowval == project.rowval
# samepattern = length(dx.colptr) == length(project.colptr) && dx.colptr[end] == project.colptr[end]
if eltype(dx) <: project_type(project.element) && samepattern
return dx
elseif samepattern
nzval = map(project.element, dx.nzval)
m, n = size(dx)
return SparseMatrixCSC(m, n, dx.colptr, dx.rowval, nzval)
else
invoke(project, Tuple{AbstractArray}, dx)
end
end
Loading