Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allow multicolumn transformations for AbstractDataFrame #2461

Merged
merged 21 commits into from
Oct 9, 2020
Merged
Show file tree
Hide file tree
Changes from 18 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,10 @@

## Breaking changes

* the rules for transformations passed to `select`/`select!`, `transform`/`transform!`,
and `combine` have been made more flexible; in particular now it is allowed to
return multiple columns from a transformation function
[#2461](https://github.com/JuliaData/DataFrames.jl/pull/2461)
* CategoricalArrays.jl is no longer reexported: call `using CategoricalArrays`
to use it [#2404]((https://github.com/JuliaData/DataFrames.jl/pull/2404)).
In the same vein, the `categorical` and `categorical!` functions
Expand Down
3 changes: 2 additions & 1 deletion docs/src/lib/types.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,8 @@ The `ByRow` type is a special type used for selection operations to signal that
to each element (row) of the selection.

The `AsTable` type is a special type used for selection operations to signal that the columns selected by a wrapped
selector should be passed as a `NamedTuple` to the function.
selector should be passed as a `NamedTuple` to the function or to signal that it is requested
to expand the return value of a transformation into multiple columns.

## [The design of handling of columns of a `DataFrame`](@id man-columnhandling)

Expand Down
8 changes: 8 additions & 0 deletions docs/src/man/getting_started.md
Original file line number Diff line number Diff line change
Expand Up @@ -627,6 +627,14 @@ julia> select(df, :x2, :x2 => ByRow(sqrt)) # transform columns by row
├─────┼───────┼─────────┤
│ 1 │ 3 │ 1.73205 │
│ 2 │ 4 │ 2.0 │

julia> select(df, AsTable(:) => ByRow(extrema) => [:lo, :hi]) # return multiple columns
2×2 DataFrame
│ Row │ lo │ hi │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 5 │
│ 2 │ 2 │ 6 │
```

It is important to note that `select` always returns a data frame,
Expand Down
704 changes: 519 additions & 185 deletions src/abstractdataframe/selection.jl

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion src/groupeddataframe/splitapplycombine.jl
Original file line number Diff line number Diff line change
Expand Up @@ -502,7 +502,7 @@ function _combine_prepare(gd::GroupedDataFrame,
for p in cs
if p === nrow
push!(cs_vec, nrow => :nrow)
elseif p isa AbstractVector{<:Pair}
elseif p isa AbstractVecOrMat{<:Pair}
append!(cs_vec, p)
else
push!(cs_vec, p)
Expand Down
14 changes: 6 additions & 8 deletions test/grouping.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1977,8 +1977,10 @@ end
[df DataFrame(x_function=[(-1,), (-2,) ,(-3,) ,(-4,) ,(-5,)],
y_function=[(-6,), (-7,) ,(-8,) ,(-9,) ,(-10,)])]

@test_throws ArgumentError combine(gdf, AsTable([:x, :y]) => ByRow(identity))
@test_throws ArgumentError combine(gdf, AsTable([:x, :y]) => ByRow(x -> df[1, :]))
@test combine(gdf, AsTable([:x, :y]) => ByRow(identity)) ==
DataFrame(g=[1,1,1,2,2], x_y_identity=ByRow(identity)((x=1:5, y=6:10)))
@test combine(gdf, AsTable([:x, :y]) => ByRow(x -> df[1, :])) ==
DataFrame(g=[1,1,1,2,2], x_y_function=fill(df[1, :], 5))
end

@testset "test correctness of ungrouping" begin
Expand Down Expand Up @@ -2698,12 +2700,8 @@ end
@test isequal_typed(combine(df, :x => (x -> 1:2) => :y), DataFrame(y=1:2))
@test isequal_typed(combine(df, :x => (x -> x isa Vector{Int} ? "a" : 'a') => :y),
DataFrame(y="a"))

# in the future this should be DataFrame(nrow=0)
@test_throws ArgumentError combine(nrow, df)

# in the future this should be DataFrame(a=1,b=2)
@test_throws ArgumentError combine(sdf -> DataFrame(a=1,b=2), df)
@test combine(nrow, df) == DataFrame(nrow=0)
@test combine(sdf -> DataFrame(a=1,b=2), df) == DataFrame(a=1,b=2)
end

@testset "disallowed tuple column selector" begin
Expand Down
Loading