Skip to content

Commit

Permalink
merged #5
Browse files Browse the repository at this point in the history
  • Loading branch information
jrevels committed Jan 7, 2015
1 parent 81f3ddb commit 0a66861
Show file tree
Hide file tree
Showing 13 changed files with 394 additions and 835 deletions.
4 changes: 4 additions & 0 deletions .travis.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
language: julia
julia:
- release
- nightly
1 change: 1 addition & 0 deletions REQUIRE
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
julia 0.3-
102 changes: 58 additions & 44 deletions src/QuBase.jl
Original file line number Diff line number Diff line change
@@ -1,51 +1,65 @@
module QuBase

#############
# Constants #
#############
const lang = "\u27E8"
const rang = "\u27E9"
const otimes = "\u2297"
const vdots ="\u205E"

import Base: kron

####################
# String Constants #
####################
const lang = "\u27E8"
const rang = "\u27E9"
const otimes = "\u2297"
const vdots ="\u205E"

##################
# Abstract Types #
##################
abstract AbstractStructure
abstract AbstractQuantum{S<:AbstractStructure}
abstract AbstractState{S<:AbstractStructure} <: AbstractQuantum{S}
abstract AbstractOperator{S<:AbstractStructure} <: AbstractQuantum{S}
abstract AbstractBasis{S<:AbstractStructure} <: AbstractQuantum{S}
abstract QuantumScalar <: Number
##################
# Abstract Types #
##################
abstract AbstractStructure
abstract Orthonormal <: AbstractStructure
abstract AbstractQuantum{S<:AbstractStructure}

#############
# Functions #
#############
structure{S}(::AbstractQuantum{S}) = S
# Various constructor methods in this repo allow an argument
# of type Type{BypassFlag} to be passed in in order to
# circumvent value precalculation/checking. This is useful for
# conversion methods and the like, where you know the input
# has already been vetted elsewhere. Don't use this unless
# you're sure of what you're doing, and don't export this.
abstract BypassFlag

for T=(:AbstractQuantum, :AbstractState, :AbstractOperator, :AbstractBasis)
@eval begin
structure{S}(::Type{($T){S}}) = S
structure(::Type{($T)}) = AbstractStructure
end
end
#############
# Functions #
#############

######################
# Include Statements #
######################
include("statelabel.jl")
include("diracstates.jl")
include("diracoperators.jl")
include("scalar.jl")
include("quarray.jl")
# This should be the only `structure`
# method that needs to be defined for
# type *instances*
structure{S}(::AbstractQuantum{S}) = S
structure(::DataType) = AbstractStructure

export AbstractStructure,
AbstractQuantum,
AbstractState,
AbstractOperator,
AbstractBasis,
QuantumScalar,
structure

# ...and all relevant singleton types
# should have it defined as well:
structure{S}(::Type{AbstractQuantum{S}}) = S

# an n-arity form of the tensor
# product, reduction is done via
# the binary definition of tensor()
# defined in the files included above.
tensor(s...) = reduce(tensor, s)

# For the sake of convenience, kron()
# is defined to be equivalent to
# tensor() for quantum objects
kron(a::AbstractQuantum, b::AbstractQuantum) = tensor(a, b)

######################
# Include Statements #
######################
include("bases/bases.jl")
include("arrays/quarray.jl")

export AbstractStructure,
AbstractQuantum,
Orthonormal,
structure,
tensor
end
68 changes: 68 additions & 0 deletions src/arrays/ladderops.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
###########################
# Ladder Operator Methods #
###########################
# n specifies which particle (a.k.a tensor product
# factor) the operator acts on
raisematrix(lens, n=1) = laddermatrix(lens, RaiseOpFlag, n)
lowermatrix(lens, n=1) = laddermatrix(lens, LowerOpFlag, n)

raiseop(b::AbstractBasis, n=1) = QuArray(raisematrix(size(b), n), b, b)
raiseop(lens::Tuple, n=1) = raiseop(FiniteBasis(lens), n)

lowerop(b::AbstractBasis, n=1) = QuArray(lowermatrix(size(b), n), b, b)
lowerop(lens::Tuple, n=1) = lowerop(FiniteBasis(lens), n)

##########################
# Helper Functions/Types #
##########################
abstract LadderOpFlag
abstract RaiseOpFlag <: LadderOpFlag
abstract LowerOpFlag <: LadderOpFlag

ladder_inds(n, ::Type{RaiseOpFlag}) = ([1:n-1], [2:n])
ladder_inds(n, ::Type{LowerOpFlag}) = ([2:n], [1:n-1])
laddercoeffs(n) = sqrt(linspace(1, n, n))

function fill_op_arr!(arr::AbstractMatrix, ladderflag)
if size(arr, 1) == size(arr, 2)
len = size(arr, 1)
inds = ladder_inds(len, ladderflag)
coeffs = laddercoeffs(len)
for i=1:len-1
arr[inds[1][i], inds[2][i]] = coeffs[i]
end
else
error("Cannot generate ladder coefficients for non-square matrix")
end
return arr
end

# returns a coefficient matrix
# for a ladder operator for a
# single particle fock basis
gen_op_mat(len, ladderflag) = fill_op_arr!(spzeros(len, len), ladderflag)

# this could/should be further optimized,
# it uses the naive approach of taking the
# kronecker product of identity matrices
# and the relevant ladder operator matrix
function laddermatrix(lens, ladderflag, n=1)
if n==1
arr = gen_op_mat(lens[1], ladderflag)
else
arr = speye(lens[1])
for i=2:n-1
arr = kron(speye(lens[i]), arr)
end
arr = kron(gen_op_mat(lens[n], ladderflag), arr)
end
for i=n+1:length(lens)
arr = kron(speye(lens[i]), arr)
end
return arr
end

export raisematrix,
lowermatrix,
raiseop,
lowerop
141 changes: 141 additions & 0 deletions src/arrays/quarray.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
import Base: size,
length,
getindex,
similar,
in,
ctranspose,
transpose,
summary,
zeros,
eye,
#TODO: Implement the below operations
*,.*,
/,./,
+,.+,
-,.-,
kron

abstract AbstractQuArray{B<:AbstractBasis,T,N} <: AbstractArray{T,N}

###########
# QuArray #
###########
# Using an NTuple allows us to have a basis for each dimension,
# and gives us a less ambiguous way to determine if a QuArray will act
# like a vector, matrix, or tensor using the dimension parameter N.
type QuArray{B<:AbstractBasis,T,N,A} <: AbstractQuArray{B,T,N}
coeffs::A
bases::NTuple{N,B}
function QuArray(coeffs::AbstractArray{T}, bases::NTuple{N,B})
if checkbases(coeffs, bases)
new(coeffs, bases)
else
error("Coefficient array does not conform to input bases")
end
end
end

typealias QuVector{B<:AbstractBasis,T,A} QuArray{B,T,1,A}
typealias QuMatrix{B<:AbstractBasis,T,A} QuArray{B,T,2,A}

QuArray{T,N,B<:AbstractBasis}(coeffs::AbstractArray{T}, bases::NTuple{N,B}) = QuArray{B,T,N,typeof(coeffs)}(coeffs, bases)
QuArray(coeffs, bases::AbstractBasis...) = QuArray(coeffs, bases)
QuArray(coeffs) = QuArray(coeffs, basesfordims(size(coeffs)))

############################
# Convenience Constructors #
############################
statevec(i::Int, fb::FiniteBasis) = QuArray(single_coeff(i, length(fb)), fb)
statevec(i::Int, lens::Int...=i) = statevec(i, FiniteBasis(lens))

zeros(qa::QuArray) = QuArray(zeros(qa.coeffs), qa.bases)
eye(qa::QuArray) = QuArray(eye(qa.coeffs), qa.bases)

######################
# Property Functions #
######################
bases(qa::QuArray) = qa.bases
coeffs(qa::QuArray) = qa.coeffs
size(qa::QuArray, i...) = size(qa.coeffs, i...)

########################
# Array-like functions #
########################
similar{B,T}(qa::QuArray{B,T}, element_type=T) = QuArray(similar(qa.coeffs, T), qa.bases)
# Is there a way to properly define the below for
# any arbitrary basis? Obviously doesn't make sense
# for B<:AbstractInfiniteBasis, and I'm reluctant to
# enforce that every B<:AbstractFiniteBasis will have a
# constructor B(::Int), which is how the below is constructing
# instances of FiniteBasis.
function similar{B<:FiniteBasis,T}(qa::QuArray{B,T}, element_type, dims)
return QuArray(similar(qa.coeffs, T, dims), basesfordims(dims, B))
end
getindex(qa::QuArray, i::AbstractArray) = getindex(qa.coeffs, i)
getindex(qa::QuArray, i::Real) = getindex(qa.coeffs, i)
getindex(qa::QuArray, i) = getindex(qa.coeffs, i)
getindex(qa::QuArray, i...) = getindex(qa.coeffs, i...)

in(c, qa::QuArray) = in(c, qa.coeffs)

ctranspose(qa::QuVector) = QuArray(ctranspose(qa.coeffs), qa.bases)
ctranspose(qa::QuMatrix) = QuArray(ctranspose(qa.coeffs), reverse(qa.bases))
transpose(qa::QuVector) = QuArray(transpose(qa.coeffs), qa.bases)
transpose(qa::QuMatrix) = QuArray(transpose(qa.coeffs), reverse(qa.bases))

######################
# Printing Functions #
######################
function summary{B,T,N,A}(qa::QuArray{B,T,N,A})
return "$(sizenotation(size(qa))) QuArray\n" *
"...bases: $B,\n" *
"...coeff: $A"
end

######################
# Include Statements #
######################
include("ladderops.jl")

####################
# Helper Functions #
####################
sizenotation(tup::(Int,)) = "$(first(tup))-element"
sizenotation(tup::(Int...)) = reduce(*, map(s->"$(s)x", tup))[1:end-1]

# checkbases() is overloaded for a single basis
# to handle the fact that row vectors are
# N=2
function checkbases(coeffs, bases::NTuple{1, AbstractBasis})
if ndims(coeffs) <= 2
if size(coeffs, 2) == 1
return checkcoeffs(coeffs, 1, first(bases))
elseif size(coeffs, 1) == 1
return checkcoeffs(coeffs, 2, first(bases))
end
end
return false
end

function checkbases{N}(coeffs, bases::NTuple{N, AbstractBasis})
if ndims(coeffs) == length(bases)
return reduce(&, [checkcoeffs(coeffs, i, bases[i]) for i=1:N])
end
return false
end

# Assumes that every basis type passed in
# has a constructor B(::eltype(lens))
function basesfordims(lens::Tuple, B=ntuple(length(lens), x->FiniteBasis))
return ntuple(length(lens), n->B[n](lens[n]))
end
one_at_ind!(arr, i) = setindex!(arr, one(eltype(arr)), i)
single_coeff(i, lens...) = one_at_ind!(zeros(lens), i)

export AbstractQuArray,
QuArray,
QuVector,
QuMatrix,
bases,
coeffs,
statevec
55 changes: 55 additions & 0 deletions src/bases/bases.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
####################
# Type Definitions #
####################
abstract AbstractBasis{S<:AbstractStructure} <: AbstractQuantum{S}
abstract AbstractFiniteBasis{S<:AbstractStructure} <: AbstractBasis{S}
abstract AbstractInfiniteBasis{S<:AbstractStructure} <: AbstractBasis{S}

#############
# Functions #
#############
# Note: All B<:AbstractBasis types should implement the following:
#
# checkcoeffs(coeffs, dim, basis::B) -> checks whether a coefficient
# array is valid for use with
# the given basis. This is used
# by QuArray to ensure that the
# coefficient array is not malformed
# with respect to the input bases.
# The second argument, `dim`, specifies
# the dimension of the coefficient
# array which corresponds to the provided
# basis.
#
# nfactors(basis::B) -> the number of factor bases for `basis`; this is `N`
# in `FiniteBasis{S,N}`
#
# tensor(a::B, b::B) -> Take the tensor product of these two bases. This
# function should optimally return a basis of same
# type as the input bases. We can and should also
# implement promote_rules/conversion methods between
# bases.
#
# structure{S}(::Type{MyBasisType{S}}) -> returns S<:AbstractStructure for
# the provided basis type.

checkcoeffs(coeffs::AbstractArray, dim::Int, basis::AbstractBasis) = error("checkcoeffs(coeffs, dim, ::$B) must be defined!")

for basis=(:AbstractBasis, :AbstractFiniteBasis, :AbstractInfiniteBasis)
@eval begin
structure{S}(::Type{($basis){S}}) = S
end
end

######################
# Include Statements #
######################
include("finitebasis.jl")

export AbstractBasis,
AbstractFiniteBasis,
AbstractInfiniteBasis,
checkcoeffs,
structure


Loading

0 comments on commit 0a66861

Please sign in to comment.