-
Notifications
You must be signed in to change notification settings - Fork 9
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
WIP: rework TileIterator #27
base: master
Are you sure you want to change the base?
Changes from 4 commits
a2d3b5b
42aca10
52a8328
9946e31
855918d
519a984
3c5977d
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
### TileIndices | ||
|
||
struct TileIndices{T, N, R<:AbstractTileRange} <: AbstractArray{T, N} | ||
indices::NTuple{N, R} | ||
function TileIndices(indices::NTuple{N, <:AbstractTileRange{T}}) where {N, T} | ||
new{NTuple{N, T}, N, eltype(indices)}(indices) | ||
end | ||
end | ||
|
||
""" | ||
TileIndices(indices, sz, Δ=sz; keep_last=true) | ||
|
||
Construct a sliding tile along axes `indices` with fixed sliding strides `Δ` and tile size `sz`. | ||
|
||
# Arguments | ||
|
||
- `indices`: tuple of ranges, or `CartesianIndices`. | ||
- `sz`: The size of each tile. If keyword `keep_last=true`, the last tile size might be smaller than | ||
`sz`. | ||
- `Δ=sz`: For each dimension `i` and `r = indices[i]`, the sliding stride `Δ[i]` is defined as | ||
`first(r[n]) - first(r[n-1])`. Using a stride `Δ[i] < sz[i]` means there are overlaps between each | ||
adjacent tile along this dimension. | ||
- `keep_last=true` (keyword): this keyword affects the cases when the last tile size is smaller | ||
than `sz`, in which case, `true`/`false` tells `TileIndices` to keep/discard the last tile. | ||
|
||
# Examples | ||
|
||
```jldoctest; setup=:(using TiledIteration) | ||
julia> TileIndices((1:4, 0:5), (3, 4), (2, 3)) | ||
2×2 TileIndices{Tuple{UnitRange{$Int},UnitRange{$Int}},2,FixedTileRange{UnitRange{$Int},$Int,UnitRange{$Int}}}: | ||
(1:3, 0:3) (1:3, 3:5) | ||
(3:4, 0:3) (3:4, 3:5) | ||
|
||
julia> TileIndices((1:4, 0:5), (3, 4), (2, 3); keep_last=false) | ||
1×1 TileIndices{Tuple{UnitRange{$Int},UnitRange{$Int}},2,FixedTileRange{UnitRange{$Int},$Int,UnitRange{$Int}}}: | ||
(1:3, 0:3) | ||
``` | ||
|
||
When `sz` and `Δ` are scalars, it affects each dimension equivalently. | ||
|
||
```jldoctest; setup=:(using TiledIteration) | ||
julia> TileIndices((1:4, 0:5), 3, 2) | ||
2×3 TileIndices{Tuple{UnitRange{$Int},UnitRange{$Int}},2,FixedTileRange{UnitRange{$Int},$Int,UnitRange{$Int}}}: | ||
(1:3, 0:2) (1:3, 2:4) (1:3, 4:5) | ||
(3:4, 0:2) (3:4, 2:4) (3:4, 4:5) | ||
|
||
julia> TileIndices((1:4, 0:5), 3, 2; keep_last=false) | ||
1×2 TileIndices{Tuple{UnitRange{$Int},UnitRange{$Int}},2,FixedTileRange{UnitRange{$Int},$Int,UnitRange{$Int}}}: | ||
(1:3, 0:2) (1:3, 2:4) | ||
``` | ||
|
||
!!! note | ||
This method is equivalent to `TileIndices(indices, FixedTile(sz, Δ; keep_last=keep_last))`. | ||
""" | ||
TileIndices(indices, n, Δ=n; kwargs...) = TileIndices(indices, FixedTile(n, Δ; kwargs...)) | ||
|
||
|
||
""" | ||
TileIndices(indices, s::AbstractTileStrategy) | ||
|
||
Construct a sliding tile along axes `indices` using provided tile strategy `s`. | ||
|
||
`indices` are tuple of ranges, or `CartesianIndices`. | ||
|
||
Currently available strategies are: | ||
|
||
- [`FixedTile`](@ref): each tile is of the same fixed size (except the last one). | ||
|
||
For usage examples, please refer to the docstring of each tile strategy. | ||
""" | ||
TileIndices(indices, s::AbstractTileStrategy) = TileIndices(s(indices)) | ||
|
||
Base.size(iter::TileIndices) = map(length, iter.indices) | ||
|
||
Base.@propagate_inbounds function Base.getindex( | ||
iter::TileIndices{T, N}, | ||
inds::Vararg{Int, N}) where {N, T} | ||
map(getindex, iter.indices, inds) | ||
end | ||
Base.@propagate_inbounds function Base.getindex( | ||
iter::TileIndices{T, N}, | ||
inds::Vararg{Int, N}) where {N, T<:NTuple{N, CartesianIndices}} | ||
tile = map(getindex, iter.indices, inds) | ||
# reformulate into CartesianIndices{N} | ||
CartesianIndices(mapreduce(I->I.indices, (i,j)->(i..., j...), tile)) | ||
end |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
# AbstractTileRange Protocols | ||
# | ||
# The parent range `R` is supposed to be an array of scalar indices, including: | ||
# - ranges | ||
# - vectors of integers | ||
# - CartesianIndices{1} | ||
# | ||
# A tile range generated from `R` is a iterator whose elements are also an array of scalar indices. | ||
# It's an indices-specific block array. | ||
# | ||
# Reference: https://docs.julialang.org/en/v1.5/manual/arrays/#man-supported-index-types | ||
# | ||
# | ||
# | scalar index | indices(tile) | | ||
# |-------------------|----------------- | | ||
# | range/vector | AbstractTileRange | | ||
# | CartesianIndices | TileIndices | | ||
# | ||
# AbstractTileStrategy serves as an adapter for `AbstractTileRange` and `TileIndices` | ||
|
||
|
||
abstract type AbstractTileRange{R} <: AbstractArray{R, 1} end | ||
abstract type AbstractTileStrategy end | ||
|
||
const Range1 = Union{AbstractUnitRange, AbstractVector} | ||
|
||
### FixedTileRange and FixedTile | ||
|
||
""" | ||
FixedTileRange(r, n, [Δ=n]; keep_last=true) | ||
|
||
Construct a sliding tile along range `r` with fixed sliding stride `Δ` and tile length `n`. | ||
|
||
# Arguments | ||
|
||
- `r`: a range, `CartesianIndices` or `Vector` | ||
- `n::Integer`: The length of each tile. If keyword `keep_last=true`, the last tile length might be | ||
less than `n`. | ||
- `Δ::Union{Integer, CartesianIndex{1}}=n`: The sliding stride `Δ` is defined as `first(r[n]) - | ||
first(r[n-1])`. Using a stride `Δ<n` means there are overlaps between each adjacent tile. `Δ` can | ||
also be `CartesianIndex{1}`. | ||
- `keep_last=true` (keyword): this keyword affects the cases when the last tile has few elements | ||
than `n`, in which case, `true`/`false` tells `FixedTileRange` to keep/discard the last tile. | ||
|
||
# Examples | ||
|
||
```jldoctest; setup=:(using TiledIteration) | ||
julia> FixedTileRange(2:10, 3) | ||
3-element FixedTileRange{UnitRange{Int64},Int64,UnitRange{Int64}}: | ||
2:4 | ||
5:7 | ||
8:10 | ||
|
||
julia> FixedTileRange(1:10, 4) | ||
3-element FixedTileRange{UnitRange{Int64},Int64,UnitRange{Int64}}: | ||
1:4 | ||
5:8 | ||
9:10 | ||
|
||
julia> FixedTileRange(1:10, 4, 2) | ||
4-element FixedTileRange{UnitRange{Int64},Int64,UnitRange{Int64}}: | ||
1:4 | ||
3:6 | ||
5:8 | ||
7:10 | ||
|
||
julia> FixedTileRange(1:10, 4; keep_last=false) | ||
2-element FixedTileRange{UnitRange{Int64},Int64,UnitRange{Int64}}: | ||
1:4 | ||
5:8 | ||
``` | ||
|
||
Besides an `AbstractUnitRange`, the input range `r` can also be a `CartesianIndices{1}` or more | ||
generally, an `AbstractVector{<:Integer}`: | ||
|
||
```jldoctest; setup=:(using TiledIteration) | ||
julia> FixedTileRange(CartesianIndices((1:10, )), 4) | ||
3-element FixedTileRange{CartesianIndices{1,Tuple{UnitRange{Int64}}},Int64,CartesianIndices{1,Tuple{UnitRange{Int64}}}}: | ||
[CartesianIndex(1,), CartesianIndex(2,), CartesianIndex(3,), CartesianIndex(4,)] | ||
[CartesianIndex(5,), CartesianIndex(6,), CartesianIndex(7,), CartesianIndex(8,)] | ||
[CartesianIndex(9,), CartesianIndex(10,)] | ||
``` | ||
|
||
!!! warning It usually has bad indexing performance if `r` is not lazily evaluated. For example, | ||
`FixedTileRange(collect(1:10), 4)` creates a new `Vector` of length `4` everytime when | ||
`getindex` is called. | ||
""" | ||
struct FixedTileRange{R, T, RP} <: AbstractTileRange{R} | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The parameters could use some clarificiation, maybe just by subtyping, e.g., |
||
parent::RP | ||
n::T | ||
Δ::T | ||
keep_last::Bool | ||
|
||
# keep `length` information to avoid unnecessary calculation and thus is more performant | ||
length::T | ||
|
||
function FixedTileRange(parent::R, n::T, Δ; keep_last::Bool=true) where {R<:Range1, T} | ||
_length = _fixedtile_length(first(parent), last(parent), n, Δ, keep_last) | ||
new{_eltype(R), T, R}(parent, n, Δ, keep_last, _length) | ||
end | ||
end | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. It's interesting that this is conceptually equivalent to There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Hmmm, not sure if I understand it right, do you mean julia> TileIndices((1:5, 7:11), 2)
3×3 TileIndices{Tuple{UnitRange{Int64},UnitRange{Int64}},2,FixedTileRange{UnitRange{Int64},Int64,UnitRange{Int64}}}:
(1:2, 7:8) (1:2, 9:10) (1:2, 11:11)
(3:4, 7:8) (3:4, 9:10) (3:4, 11:11)
(5:5, 7:8) (5:5, 9:10) (5:5, 11:11) ? I couldn't find what There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
I would be largely relieved if we could separate the indices and tile indices world, just like how we are doing with normal array and fancy block arrays. If that's what you were thinking about. or are you saying to could make something like |
||
FixedTileRange(r::Range1, n::Integer; kwargs...) = FixedTileRange(r, n, n; kwargs...) | ||
|
||
_eltype(::Type{R}) where R<:AbstractUnitRange = UnitRange{eltype(R)} | ||
_eltype(::Type{R}) where R<:AbstractVector = R # this includes CartesianIndices{1} | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. You're standardizing There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yes, Supporting this enables us to pass lazy evaluated vectors, even though I'm not sure if there's practical usage right now. Currently, I'm mostly concerned about CartesianIndices and step range. |
||
|
||
_int(x::Integer) = x | ||
_int(x::CartesianIndex{1}) = first(x.I) | ||
|
||
function _fixedtile_length(start::T, stop::T, n, Δ, keep_last) where T<:Integer | ||
_round = keep_last ? ceil : floor | ||
return _round(T, (stop - n - start + 1)/_int(Δ)) + 1 | ||
end | ||
_fixedtile_length(start::T, stop::T, n, Δ, keep_last) where T<:CartesianIndex{1} = | ||
_fixedtile_length(_int(start), _int(stop), n, Δ, keep_last) | ||
|
||
"Get the length of the tile. The last tile might has few elements than this." | ||
tilelength(r::FixedTileRange{<:CartesianIndices{1}}) = CartesianIndex{1}(r.n) | ||
tilelength(r::FixedTileRange) = r.n | ||
|
||
"Get the stride between adjacent tiles." | ||
tilestride(r::FixedTileRange{<:CartesianIndices{1}}) = CartesianIndex{1}(r.Δ) | ||
tilestride(r::FixedTileRange) = r.Δ | ||
|
||
Base.size(r::FixedTileRange) = (r.length, ) | ||
Base.length(r::FixedTileRange) = r.length | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I don't think you need to define this (the fallbacks do it). |
||
|
||
Base.@propagate_inbounds function Base.getindex(r::FixedTileRange{R, T}, i::Int) where {R, T} | ||
@boundscheck checkbounds(r, i) | ||
start = first(r.parent) + (i-1)*tilestride(r) | ||
stop = min(start+tilelength(r)-oneunit(eltype(R)), last(r.parent)) | ||
return convert(R, start:stop) | ||
end | ||
|
||
|
||
""" | ||
FixedTile(sz, Δ; keep_last=true) | ||
|
||
A tile strategy that you can use to construct [`TileIndices`](@ref) using [`FixedTileRange`](@ref). | ||
|
||
# Arguments | ||
|
||
- `sz`: The size of each tile. If keyword `keep_last=true`, the last tile size might be smaller than | ||
`sz`. | ||
- `Δ=sz`: For each dimension `i` and `r = indices[i]`, the sliding stride `Δ[i]` is defined as | ||
`first(r[n]) - first(r[n-1])`. Using a stride `Δ[i] < sz[i]` means there are overlaps between each | ||
adjacent tile along this dimension. | ||
- `keep_last=true` (keyword): this keyword affects the cases when the last tile size is smaller | ||
than `sz`, in which case, `true`/`false` tells `TileIndices` to keep/discard the last tile. | ||
|
||
# Examples | ||
|
||
```jldoctest; setup=:(using TiledIteration) | ||
julia> TileIndices((1:4, 0:5), FixedTile((3, 4), (2, 3))) | ||
2×2 TileIndices{Tuple{UnitRange{Int64},UnitRange{Int64}},2,FixedTileRange{UnitRange{Int64},Int64,UnitRange{Int64}}}: | ||
(1:3, 0:3) (1:3, 3:5) | ||
(3:4, 0:3) (3:4, 3:5) | ||
|
||
julia> TileIndices((1:4, 0:5), FixedTile((3, 4), (2, 3); keep_last=false)) | ||
1×1 TileIndices{Tuple{UnitRange{Int64},UnitRange{Int64}},2,FixedTileRange{UnitRange{Int64},Int64,UnitRange{Int64}}}: | ||
(1:3, 0:3) | ||
``` | ||
|
||
When `sz` and `Δ` are scalars, it affects each dimension equivalently. | ||
|
||
```jldoctest; setup=:(using TiledIteration) | ||
julia> TileIndices((1:4, 0:5), FixedTile(3, 2)) | ||
2×3 TileIndices{Tuple{UnitRange{Int64},UnitRange{Int64}},2,FixedTileRange{UnitRange{Int64},Int64,UnitRange{Int64}}}: | ||
(1:3, 0:2) (1:3, 2:4) (1:3, 4:5) | ||
(3:4, 0:2) (3:4, 2:4) (3:4, 4:5) | ||
|
||
julia> TileIndices((1:4, 0:5), FixedTile(3, 2; keep_last=false)) | ||
1×2 TileIndices{Tuple{UnitRange{Int64},UnitRange{Int64}},2,FixedTileRange{UnitRange{Int64},Int64,UnitRange{Int64}}}: | ||
(1:3, 0:2) (1:3, 2:4) | ||
``` | ||
""" | ||
struct FixedTile{N, T} <: AbstractTileStrategy | ||
size::T | ||
Δ::T | ||
keep_last::Bool | ||
end | ||
|
||
FixedTile(sz::T, Δ=sz; keep_last=true) where T<:Integer = FixedTile{0, T}(sz, Δ, keep_last) | ||
FixedTile(sz::T, Δ=sz; keep_last=true) where T = FixedTile{length(sz), T}(sz, Δ, keep_last) | ||
|
||
(S::FixedTile{0})(r::Range1) = FixedTileRange(r, S.size, S.Δ; keep_last=S.keep_last) | ||
(S::FixedTile{0})(r::CartesianIndices{1}) = FixedTileRange(r, S.size, S.Δ; keep_last=S.keep_last) | ||
(S::FixedTile{0})(indices) = | ||
map(r->FixedTileRange(r, S.size, S.Δ; keep_last=S.keep_last), indices) | ||
|
||
(S::FixedTile{N})(indices) where N = | ||
map((args...)->FixedTileRange(args...; keep_last=S.keep_last), indices, S.size, S.Δ) | ||
# ambiguity patch | ||
(S::FixedTile{0})(indices::CartesianIndices{N}) where N = | ||
S(map(x->CartesianIndices((x, )), indices.indices)) | ||
(S::FixedTile{N})(indices::CartesianIndices{N}) where N = | ||
S(map(x->CartesianIndices((x, )), indices.indices)) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
@testset "TileIndices" begin | ||
function test_iteration(R) | ||
for (i, v) in enumerate(R) | ||
@test v == R[i] | ||
end | ||
end | ||
|
||
@testset "FixedTile" begin | ||
@testset "axes" begin | ||
R0 = (1:4, 0:5) | ||
|
||
R = @inferred TileIndices(R0, FixedTile((3, 4), (2, 3))) | ||
@test R == TileIndices(R0, (3, 4), (2, 3)) | ||
@test R isa AbstractArray | ||
@test eltype(R) == Tuple{UnitRange{Int}, UnitRange{Int}} | ||
@test size(R) == (2, 2) | ||
@test R[1] == (1:3, 0:3) | ||
@test R[end] == (3:4, 3:5) | ||
test_iteration(R) | ||
|
||
R = @inferred TileIndices(R0, FixedTile((3, 4), (2, 3), keep_last=false)) | ||
@test R == TileIndices(R0, (3, 4), (2, 3), keep_last=false) | ||
@test R isa AbstractArray | ||
@test eltype(R) == Tuple{UnitRange{Int}, UnitRange{Int}} | ||
@test size(R) == (1, 1) | ||
@test R[1] == (1:3, 0:3) | ||
test_iteration(R) | ||
|
||
R = @inferred TileIndices(R0, FixedTile(3, 2)) | ||
@test R == TileIndices(R0, 3, 2) | ||
@test R isa AbstractArray | ||
@test eltype(R) == Tuple{UnitRange{Int}, UnitRange{Int}} | ||
@test size(R) == (2, 3) | ||
@test R[1] == R[1, 1] == (1:3, 0:2) | ||
@test R[3] == R[1, 2] == (1:3, 2:4) | ||
@test R[end] == R[6] == (3:4, 4:5) | ||
test_iteration(R) | ||
|
||
R = @inferred TileIndices(R0, FixedTile(3, 2, keep_last=false)) | ||
@test R == TileIndices(R0, 3, 2, keep_last=false) | ||
@test R isa AbstractArray | ||
@test eltype(R) == Tuple{UnitRange{Int}, UnitRange{Int}} | ||
@test size(R) == (1, 2) | ||
@test R[1] == R[1, 1] == (1:3, 0:2) | ||
@test R[2] == R[1, 2] == R[end] == (1:3, 2:4) | ||
end | ||
|
||
@testset "CartesianIndices" begin | ||
R0 = CartesianIndex(1,0):CartesianIndex(4, 5) | ||
|
||
R = @inferred TileIndices(R0, FixedTile((3, 4), (2, 3))) | ||
@test R == TileIndices(R0, (3, 4), (2, 3)) | ||
@test R isa AbstractArray | ||
@test eltype(R) <: Tuple{<:CartesianIndices, <:CartesianIndices} | ||
@test size(R) == (2, 2) | ||
@test R[1] == CartesianIndices((1:3, 0:3)) | ||
@test R[end] == CartesianIndices((3:4, 3:5)) | ||
test_iteration(R) | ||
|
||
R = @inferred TileIndices(R0, FixedTile((3, 4), (2, 3), keep_last=false)) | ||
@test R == TileIndices(R0, (3, 4), (2, 3), keep_last=false) | ||
@test R isa AbstractArray | ||
@test eltype(R) <: Tuple{<:CartesianIndices, <:CartesianIndices} | ||
@test size(R) == (1, 1) | ||
@test R[1] == CartesianIndices((1:3, 0:3)) | ||
test_iteration(R) | ||
|
||
R = @inferred TileIndices(R0, FixedTile(3, 2)) | ||
@test R == TileIndices(R0, 3, 2) | ||
@test R isa AbstractArray | ||
@test eltype(R) <: Tuple{<:CartesianIndices, <:CartesianIndices} | ||
@test size(R) == (2, 3) | ||
@test R[1] == R[1, 1] == CartesianIndices((1:3, 0:2)) | ||
@test R[3] == R[1, 2] == CartesianIndices((1:3, 2:4)) | ||
@test R[end] == R[6] == CartesianIndices((3:4, 4:5)) | ||
test_iteration(R) | ||
|
||
R = @inferred TileIndices(R0, FixedTile(3, 2, keep_last=false)) | ||
@test R == TileIndices(R0, 3, 2, keep_last=false) | ||
@test R isa AbstractArray | ||
@test eltype(R) <: Tuple{<:CartesianIndices, <:CartesianIndices} | ||
@test size(R) == (1, 2) | ||
@test R[1] == R[1, 1] == CartesianIndices((1:3, 0:2)) | ||
@test R[2] == R[1, 2] == R[end] == CartesianIndices((1:3, 2:4)) | ||
end | ||
end | ||
end |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It's even more ugly and unstable when it comes to N-d case.
and it simply crashes during the display if I use
CartesianIndices((1:512, 1:512))
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is there a way to display those
CartesianIndices
as[CartesianIndex(1, 1):CartesianIndex(1, 7), CartesianIndex(1, 1):CartesianIndex(8, 15), CartesianIndex(1, 1):CartesianIndex(16, 20)]
while still keep the current show behavior?
I vaguely remember that we have a
top_level
keyword for display related function, but can't find the name of it now.