Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

4-tensor Mul/InvPlan #172

Merged
merged 2 commits into from
Dec 5, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "ContinuumArrays"
uuid = "7ae1f121-cc2c-504b-ac30-9b923412ae5c"
version = "0.17"
version = "0.17.1"

[deps]
AbstractFFTs = "621f4979-c628-5d54-868e-fcf4e3e8185c"
Expand Down
139 changes: 64 additions & 75 deletions src/plans.jl
Original file line number Diff line number Diff line change
Expand Up @@ -42,47 +42,6 @@ InvPlan(fact, dims) = InvPlan((fact,), dims)
size(F::InvPlan) = size.(F.factorizations, 1)


function *(P::InvPlan{<:Any,<:Tuple,Int}, x::AbstractVector)
@assert P.dims == 1
only(P.factorizations) \ x # Only a single factorization when dims isa Int
end

function *(P::InvPlan{<:Any,<:Tuple,Int}, X::AbstractMatrix)
if P.dims == 1
only(P.factorizations) \ X # Only a single factorization when dims isa Int
else
@assert P.dims == 2
permutedims(only(P.factorizations) \ permutedims(X))
end
end

function *(P::InvPlan{<:Any,<:Tuple,Int}, X::AbstractArray{<:Any,3})
Y = similar(X)
if P.dims == 1
for j in axes(X,3)
Y[:,:,j] = only(P.factorizations) \ X[:,:,j]
end
elseif P.dims == 2
for k in axes(X,1)
Y[k,:,:] = only(P.factorizations) \ X[k,:,:]
end
else
@assert P.dims == 3
for k in axes(X,1), j in axes(X,2)
Y[k,j,:] = only(P.factorizations) \ X[k,j,:]
end
end
Y
end

function *(P::InvPlan, X::AbstractArray)
for d in P.dims
X = InvPlan(P.factorizations[d], d) * X
end
X
end


"""
MulPlan(matrix, dims)

Expand All @@ -96,44 +55,74 @@ end
MulPlan(mats::Tuple, dims) = MulPlan{eltype(mats), typeof(mats), typeof(dims)}(mats, dims)
MulPlan(mats::AbstractMatrix, dims) = MulPlan((mats,), dims)

function *(P::MulPlan{<:Any,<:Tuple,Int}, x::AbstractVector)
@assert P.dims == 1
only(P.matrices) * x
end

function *(P::MulPlan{<:Any,<:Tuple,Int}, X::AbstractMatrix)
if P.dims == 1
only(P.matrices) * X
else
@assert P.dims == 2
permutedims(only(P.matrices) * permutedims(X))
end
end

function *(P::MulPlan{<:Any,<:Tuple,Int}, X::AbstractArray{<:Any,3})
Y = similar(X)
if P.dims == 1
for j in axes(X,3)
Y[:,:,j] = only(P.matrices) * X[:,:,j]
for (Pln,op,fld) in ((:MulPlan, :*, :(:matrices)), (:InvPlan, :\, :(:factorizations)))
@eval begin
function *(P::$Pln{<:Any,<:Tuple,Int}, x::AbstractVector)
@assert P.dims == 1
$op(only(getfield(P, $fld)), x) # Only a single factorization when dims isa Int
end
elseif P.dims == 2
for k in axes(X,1)
Y[k,:,:] = only(P.matrices) * X[k,:,:]

function *(P::$Pln{<:Any,<:Tuple,Int}, X::AbstractMatrix)
if P.dims == 1
$op(only(getfield(P, $fld)), X) # Only a single factorization when dims isa Int
else
@assert P.dims == 2
permutedims($op(only(getfield(P, $fld)), permutedims(X)))
end
end
else
@assert P.dims == 3
for k in axes(X,1), j in axes(X,2)
Y[k,j,:] = only(P.matrices) * X[k,j,:]

function *(P::$Pln{<:Any,<:Tuple,Int}, X::AbstractArray{<:Any,3})
Y = similar(X)
if P.dims == 1
for j in axes(X,3)
Y[:,:,j] = $op(only(getfield(P, $fld)), X[:,:,j])
end
elseif P.dims == 2
for k in axes(X,1)
Y[k,:,:] = $op(only(getfield(P, $fld)), X[k,:,:])
end
else
@assert P.dims == 3
for k in axes(X,1), j in axes(X,2)
Y[k,j,:] = $op(only(getfield(P, $fld)), X[k,j,:])
end
end
Y
end

function *(P::$Pln{<:Any,<:Tuple,Int}, X::AbstractArray{<:Any,4})
Y = similar(X)
if P.dims == 1
for j in axes(X,3), l in axes(X,4)
Y[:,:,j,l] = $op(only(getfield(P, $fld)), X[:,:,j,l])
end
elseif P.dims == 2
for k in axes(X,1), l in axes(X,4)
Y[k,:,:,l] = $op(only(getfield(P, $fld)), X[k,:,:,l])
end
elseif P.dims == 3
for k in axes(X,1), j in axes(X,2)
Y[k,j,:,:] = $op(only(getfield(P, $fld)), X[k,j,:,:])
end
elseif P.dims == 4
for k in axes(X,1), j in axes(X,2), l in axes(X,3)
Y[k,j,l,:] = $op(only(getfield(P, $fld)), X[k,j,l,:])
end
end
Y
end



*(P::$Pln{<:Any,<:Tuple,Int}, X::AbstractArray) = error("Overload")

function *(P::$Pln, X::AbstractArray)
for (fac,dim) in zip(getfield(P, $fld), P.dims)
X = $Pln(fac, dim) * X
end
X
end
end
Y
end

function *(P::MulPlan, X::AbstractArray)
for d in P.dims
X = MulPlan(P.matrices[d], d) * X
end
X
end

*(A::AbstractMatrix, P::MulPlan) = MulPlan(Ref(A) .* P.matrices, P.dims)
Expand Down
22 changes: 22 additions & 0 deletions test/test_splines.jl
Original file line number Diff line number Diff line change
Expand Up @@ -526,6 +526,28 @@ import ContinuumArrays: basis, AdjointBasisLayout, ExpansionLayout, BasisLayout,
X[k, j, :] = L[g,:] \ X[k, j, :]
end
@test PX ≈ X

n = size(L,2)
X = randn(n, n, n, n)
P = plan_transform(L, X)
PX = P * X
for k = 1:n, j = 1:n, l = 1:n
X[:, k, j, l] = L[g,:] \ X[:, k, j, l]
end
for k = 1:n, j = 1:n, l = 1:n
X[k, :, j, l] = L[g,:] \ X[k, :, j, l]
end
for k = 1:n, j = 1:n, l = 1:n
X[k, j, :, l] = L[g,:] \ X[k, j, :, l]
end
for k = 1:n, j = 1:n, l = 1:n
X[k, j, l, :] = L[g,:] \ X[k, j, l, :]
end
@test PX ≈ X

X = randn(n, n, n, n, n)
P = plan_transform(L, X)
@test_throws ErrorException P * X
end

@testset "Mul coefficients" begin
Expand Down
Loading