Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bump compat LossFunctions = "0.9" and address breakage #898

Merged
merged 2 commits into from
Apr 20, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ CategoricalDistributions = "0.1"
ComputationalResources = "0.3"
Distributions = "0.25.3"
InvertedIndices = "1"
LossFunctions = "0.5, 0.6, 0.7, 0.8"
LossFunctions = "0.9"
MLJModelInterface = "1.7"
Missings = "0.4, 1"
OrderedCollections = "1.1"
Expand Down
6 changes: 3 additions & 3 deletions src/measures/loss_functions_interface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ err_wrap(n) = ArgumentError("Bad @wrap syntax: $n. ")

# We define amacro to wrap a concrete `LossFunctions.SupervisedLoss`
# type and define its constructor, and to define property access in
# case of paramters; the macro also defined calling behaviour:
# case of paramters; the macro also defines calling behaviour:
ablaom marked this conversation as resolved.
Show resolved Hide resolved
macro wrap_loss(ex)
ex.head == :call || throw(err_wrap(1))
Loss_ex = ex.args[1]
Expand Down Expand Up @@ -130,7 +130,7 @@ MMI.prediction_type(::Type{<:DistanceLoss}) = :deterministic
MMI.target_scitype(::Type{<:DistanceLoss}) = Union{Vec{Continuous},Vec{Count}}

call(measure::DistanceLoss, yhat, y) =
LossFunctions.value(getfield(measure, :loss), y, yhat)
LossFunctions.value(getfield(measure, :loss), yhat, y)

function call(measure::DistanceLoss, yhat, y, w::AbstractArray)
return w .* call(measure, yhat, y)
Expand All @@ -148,7 +148,7 @@ _scale(p) = 2p - 1
function call(measure::MarginLoss, yhat, y)
probs_of_observed = broadcast(pdf, yhat, y)
return (LossFunctions.value).(getfield(measure, :loss),
1, _scale.(probs_of_observed))
_scale.(probs_of_observed), 1)
end

call(measure::MarginLoss, yhat, y, w::AbstractArray) =
Expand Down
17 changes: 6 additions & 11 deletions test/measures/loss_functions_interface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -42,12 +42,9 @@ end

for M_ex in MARGIN_LOSSES
m = eval(:(MLJBase.$M_ex()))
@test m(yhat, y) ≈ LossFunctions.value(getfield(m, :loss), ym, yhatm)
@test MLJBase.Mean()(m(yhat, y, w)) ≈
LossFunctions.value(getfield(m, :loss),
ym,
yhatm,
WeightedSum(w))/N
@test m(yhat, y) ≈ LossFunctions.value(getfield(m, :loss), yhatm, ym)
@test m(yhat, y, w) ≈
w .* LossFunctions.value(getfield(m, :loss), yhatm, ym)
end
end

Expand All @@ -64,10 +61,8 @@ end
m_ex = MLJBase.snakecase(M_ex)
@test m == eval(:(MLJBase.$m_ex))
@test m(yhat, y) ≈
LossFunctions.value(getfield(m, :loss), y, yhat)
@test mean(m(yhat ,y, w)) ≈
LossFunctions.value(getfield(m, :loss), y, yhat,
WeightedSum(w))/N

LossFunctions.value(getfield(m, :loss), yhat, y)
@test m(yhat ,y, w) ≈
w .* LossFunctions.value(getfield(m, :loss), yhat, y)
end
end