Skip to content

Commit

Permalink
Workflow for compiling SFMnps (NNUEv5 net)
Browse files Browse the repository at this point in the history
  • Loading branch information
Joachim26 committed May 31, 2023
1 parent c213256 commit 95e8ff8
Show file tree
Hide file tree
Showing 3 changed files with 301 additions and 0 deletions.
105 changes: 105 additions & 0 deletions .github/workflows/SFMnps_ArmWinBinariesUpload.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
name: SFMnpsArmWinBinariesUpload
on:
workflow_dispatch:
jobs:
SFnpsArmWinBuilds:
name: ${{ matrix.config.name }}
runs-on: ${{ matrix.config.os }}
env:
COMPILER: ${{ matrix.config.compiler }}
COMP: ${{ matrix.config.comp }}
strategy:
matrix:
config:
- name: Ubuntu 22.04 NDK armv8
os: ubuntu-22.04
compiler: aarch64-linux-android21-clang++
comp: ndk
run_armv8_build: true
shell: bash {0}

- name: Windows 2022 Mingw-w64 GCC x86_64
os: windows-2022
compiler: g++
comp: mingw
run_win11_build: true
msys_sys: mingw64
msys_env: x86_64-gcc
shell: msys2 {0}

defaults:
run:
working-directory: src
shell: ${{ matrix.config.shell }}
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0

- name: Setup msys and install required packages
if: runner.os == 'Windows'
uses: msys2/setup-msys2@v2
with:
msystem: ${{ matrix.config.msys_sys }}
install: mingw-w64-${{ matrix.config.msys_env }} make git

- name: Download the MEDIUM network from the fishtest framework
run: |
cp evaluateM.h evaluate.h
cd nnue
cp nnue_architectureM.h nnue_architecture.h
cd ..
make net
- name: armv8 build
if: ${{ matrix.config.run_armv8_build }}
run: |
export PATH=$ANDROID_NDK_HOME:$PATH
export PATH=$ANDROID_NDK_HOME/toolchains/llvm/prebuilt/linux-x86_64/bin:$PATH
cp nn-*.nnue ../jni
cd ../jni
cp Application_v8.mk Application.mk
ndk-build
cd ../libs/arm64-v8a
cp Stockfish ../../SFMnps_armv8
- uses: xresloader/upload-to-github-release@v1
if: ${{ matrix.config.run_armv8_build }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
overwrite: true
file: "SFMnps_armv8"
update_latest_release: true

- uses: actions/upload-artifact@v3
if: ${{ matrix.config.run_armv8_build }}
with:
name: SFMnps-armv8
path: SFMnps_armv8

- name: win11 build
if: ${{ matrix.config.run_win11_build }}
run: |
make clean
make -j3 profile-build ARCH=x86-64-modern COMP=$COMP
make strip ARCH=x86-64-modern COMP=$COMP
cp stockfish.exe ../SFMnps_modern.exe
- uses: xresloader/upload-to-github-release@v1
if: ${{ matrix.config.run_win11_build }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
overwrite: true
file: "SFMnps_modern.exe"
update_latest_release: true

- uses: actions/upload-artifact@v3
if: ${{ matrix.config.run_win11_build }}
with:
name: SFMnps-modern
path: SFMnps_modern.exe


58 changes: 58 additions & 0 deletions src/evaluateM.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef EVALUATE_H_INCLUDED
#define EVALUATE_H_INCLUDED

#include <string>
#include <optional>

#include "types.h"

namespace Stockfish {

class Position;

namespace Eval {

std::string trace(Position& pos);
Value evaluate(const Position& pos);

extern bool useNNUE;
extern std::string currentEvalFileName;

// The default net name MUST follow the format nn-[SHA256 first 12 digits].nnue
// for the build process (profile-build and fishtest) to work. Do not change the
// name of the macro, as it is used in the Makefile.
#define EvalFileDefaultName "nn-e1fb1ade4432.nnue"

namespace NNUE {

extern int RandomEvalPerturb;
extern int waitms;

void init();
void verify();

} // namespace NNUE

} // namespace Eval

} // namespace Stockfish

#endif // #ifndef EVALUATE_H_INCLUDED
138 changes: 138 additions & 0 deletions src/nnue/nnue_architectureM.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/

// Input features and network structure used in NNUE evaluation function

#ifndef NNUE_ARCHITECTURE_H_INCLUDED
#define NNUE_ARCHITECTURE_H_INCLUDED

#include <memory>

#include "nnue_common.h"

#include "features/half_ka_v2_hm.h"

#include "layers/affine_transform.h"
#include "layers/clipped_relu.h"
#include "layers/sqr_clipped_relu.h"

#include "../misc.h"

namespace Stockfish::Eval::NNUE {

// Input features used in evaluation function
using FeatureSet = Features::HalfKAv2_hm;

// Number of input feature dimensions after conversion
constexpr IndexType TransformedFeatureDimensions = 1024;
constexpr IndexType PSQTBuckets = 8;
constexpr IndexType LayerStacks = 8;

struct Network
{
static constexpr int FC_0_OUTPUTS = 15;
static constexpr int FC_1_OUTPUTS = 32;

Layers::AffineTransform<TransformedFeatureDimensions, FC_0_OUTPUTS + 1> fc_0;
Layers::SqrClippedReLU<FC_0_OUTPUTS + 1> ac_sqr_0;
Layers::ClippedReLU<FC_0_OUTPUTS + 1> ac_0;
Layers::AffineTransform<FC_0_OUTPUTS * 2, FC_1_OUTPUTS> fc_1;
Layers::ClippedReLU<FC_1_OUTPUTS> ac_1;
Layers::AffineTransform<FC_1_OUTPUTS, 1> fc_2;

// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value() {
// input slice hash
std::uint32_t hashValue = 0xEC42E90Du;
hashValue ^= TransformedFeatureDimensions * 2;

hashValue = decltype(fc_0)::get_hash_value(hashValue);
hashValue = decltype(ac_0)::get_hash_value(hashValue);
hashValue = decltype(fc_1)::get_hash_value(hashValue);
hashValue = decltype(ac_1)::get_hash_value(hashValue);
hashValue = decltype(fc_2)::get_hash_value(hashValue);

return hashValue;
}

// Read network parameters
bool read_parameters(std::istream& stream) {
if (!fc_0.read_parameters(stream)) return false;
if (!ac_0.read_parameters(stream)) return false;
if (!fc_1.read_parameters(stream)) return false;
if (!ac_1.read_parameters(stream)) return false;
if (!fc_2.read_parameters(stream)) return false;
return true;
}

// Read network parameters
bool write_parameters(std::ostream& stream) const {
if (!fc_0.write_parameters(stream)) return false;
if (!ac_0.write_parameters(stream)) return false;
if (!fc_1.write_parameters(stream)) return false;
if (!ac_1.write_parameters(stream)) return false;
if (!fc_2.write_parameters(stream)) return false;
return true;
}

std::int32_t propagate(const TransformedFeatureType* transformedFeatures)
{
struct alignas(CacheLineSize) Buffer
{
alignas(CacheLineSize) decltype(fc_0)::OutputBuffer fc_0_out;
alignas(CacheLineSize) decltype(ac_sqr_0)::OutputType ac_sqr_0_out[ceil_to_multiple<IndexType>(FC_0_OUTPUTS * 2, 32)];
alignas(CacheLineSize) decltype(ac_0)::OutputBuffer ac_0_out;
alignas(CacheLineSize) decltype(fc_1)::OutputBuffer fc_1_out;
alignas(CacheLineSize) decltype(ac_1)::OutputBuffer ac_1_out;
alignas(CacheLineSize) decltype(fc_2)::OutputBuffer fc_2_out;

Buffer()
{
std::memset(this, 0, sizeof(*this));
}
};

#if defined(__clang__) && (__APPLE__)
// workaround for a bug reported with xcode 12
static thread_local auto tlsBuffer = std::make_unique<Buffer>();
// Access TLS only once, cache result.
Buffer& buffer = *tlsBuffer;
#else
alignas(CacheLineSize) static thread_local Buffer buffer;
#endif

fc_0.propagate(transformedFeatures, buffer.fc_0_out);
ac_sqr_0.propagate(buffer.fc_0_out, buffer.ac_sqr_0_out);
ac_0.propagate(buffer.fc_0_out, buffer.ac_0_out);
std::memcpy(buffer.ac_sqr_0_out + FC_0_OUTPUTS, buffer.ac_0_out, FC_0_OUTPUTS * sizeof(decltype(ac_0)::OutputType));
fc_1.propagate(buffer.ac_sqr_0_out, buffer.fc_1_out);
ac_1.propagate(buffer.fc_1_out, buffer.ac_1_out);
fc_2.propagate(buffer.ac_1_out, buffer.fc_2_out);

// buffer.fc_0_out[FC_0_OUTPUTS] is such that 1.0 is equal to 127*(1<<WeightScaleBits) in quantized form
// but we want 1.0 to be equal to 600*OutputScale
std::int32_t fwdOut = int(buffer.fc_0_out[FC_0_OUTPUTS]) * (600*OutputScale) / (127*(1<<WeightScaleBits));
std::int32_t outputValue = buffer.fc_2_out[0] + fwdOut;

return outputValue;
}
};

} // namespace Stockfish::Eval::NNUE

#endif // #ifndef NNUE_ARCHITECTURE_H_INCLUDED

0 comments on commit 95e8ff8

Please sign in to comment.