Assignment: This repository contains the code for paper implementation of the "SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes" paper published at NeurIPS 2021. The official implementation of the paper can be found at https://github.com/ZhaozhiQIAN/SyncTwin-NeurIPS-2021
Run the algorithm using Pytorch and CUDA https://pytorch.org/
pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio===0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
pip install -r requirements.txt
To maintain similarity in the dataset and reproduce the results of the simulation study conducted in the paper, data generation scripts from the official implementation of the paper (https://github.com/ZhaozhiQIAN/SyncTwin-NeurIPS-2021) was utilized.
Run the following script for data generation:
For conditions m=0, S=25,p=[0.1,0.25,0.5] ==> For different confounding bias
python -u -m pkpd_sim3_bias_generation --sim_id=sync6d-p10 --control_sample=1000 --control_c1=100 --train_step=25 --step=30 --seed=100
python -u -m pkpd_sim3_bias_generation --sim_id=sync6d-p25 --control_sample=1000 --control_c1=250 --train_step=25 --step=30 --seed=100
python -u -m pkpd_sim3_bias_generation --sim_id=sync6d-p50 --control_sample=1000 --control_c1=500 --train_step=25 --step=30 --seed=100
For conditions p=0.5, S=25, m = [0.3,0.5,0.7] ==> Irregularly observed covariates
python -u -m pkpd_sim3_irregular_generation --sim_id=sync6d --seed=100 --missing_pct=0.3
python -u -m pkpd_sim3_irregular_generation --sim_id=sync6d --seed=100 --missing_pct=0.5
python -u -m pkpd_sim3_irregular_generation --sim_id=sync6d --seed=100 --missing_pct=0.7
A demonstration notebook (Demo.ipynb) is included to provide a hands-on experience to showcase the implementation of the method and produce results for various experiment settings.
@article{qian2021synctwin,
title={Synctwin: Treatment effect estimation with longitudinal outcomes},
author={Qian, Zhaozhi and Zhang, Yao and Bica, Ioana and Wood, Angela and van der Schaar, Mihaela},
journal={Advances in Neural Information Processing Systems},
volume={34},
pages={3178--3190},
year={2021}
}