This is repository for NSLP-G. Pytorch implementation of the paper "Non-Autoregressive Sign Language Production with Gaussian Space", BMVC 2021.
If you find this code useful in your research, please cite:
@inproceedings{hwang2021non,
title={Non-Autoregressive Sign Language Production with Gaussian Space},
author={Hwang, Eui Jun and Kim, Jung-Ho and Park, Jong C.},
booktitle={The 32nd British Machine Vision Conference (BMVC 21)},
year={2021},
organization={British Machine Vision Conference (BMVC)}
}
conda env create -f environment.yaml
conda activate nslp
Please download dataset from Phoenix14-T and How2Sign
Note: The data classes are implemented in scripts/data.py
, but you can create your own.
python scripts/train_spavae.py \
--accelerator gpu --devices 0 \
--num_worker 8 --batch_size 64 \
--dataset_type {DATASET_TYPE} \
--train_path {TRAIN_PATH} \
--valid_path {VALID_PATH} \
--test_path {TEST_PATH}
python scripts/train_nslpg.py \
--accelerator gpu --devices 0 \
--num_worker 8 --batch_size 64 \
--vae_ckpt {PRETRAINED_VAE_CKPT} \
--dataset_type {DATASET_TYPE} \
--train_path {TRAIN_PATH} \
--valid_path {VALID_PATH} \
--test_path {TEST_PATH}
python scripts/train_tfae.py \
--accelerator gpu --devices 0 \
--num_worker 8 --batch_size 64 \
--dataset_type {DATASET_TYPE} \
--train_path {TRAIN_PATH} \
--valid_path {VALID_PATH} \
--test_path {TEST_PATH}
python scripts/eval_fgd.py \
--ckpt {CHECKPOINT_PATH}
--dataset_type {DATASET_TYPE} \
--train_path {TRAIN_PATH} \
--valid_path {VALID_PATH} \
--test_path {TEST_PATH}
--device {CUDA_or_CPU} \
--input_dir {INPUT_DIR}