Note: rapl
is in early development and is not optimized for performance, is not recommended for production applications.
rapl
is mathematical computing Rust library that provides a simple way of working with N-dimensional array, along with a wide range of mathematical functions to manipulate them. It takes inspiration from NumPy and APL, with the primary aim of achieving maximum ergonomics and user-friendliness while maintaining generality.
Our goal is to make Rust scripting as productive as possible, and make Rust a real option when it comes to numerical computing and data science. Check out the examples.
Out of the box rapl
provides features like co-broadcasting, rank type checking, native complex number support, among many others:
use rapl::*;
fn main() {
let a = Ndarr::from([1 + 1.i(), 2 + 1.i()]);
let b = Ndarr::from([[1, 2], [3, 4]]);
let r = a + b - 2;
assert_eq!(r, Ndarr::from([[1.i(), 2 + 1.i()],[2 + 1.i(), 4 + 1.i()]]));
}
There are multiple handy ways of initializing N-dimensional arrays (or Ndarr
).
- From Native Rust arrays to
Ndarr
.
let a = Ndarr::from(["a","b","c"]);
let b = Ndarr::from([[1,2],[3,4]]);
- From ranges.
let a = Ndarr::from(1..7).reshape(&[2,3])
- From
&str
let chars = Ndarr::from("Hello rapl!"); //Ndarr<char,U1>
- Others:
let ones: Ndarr<f32, 2> = Ndarr::ones(&[4,4]);
let zeros : Ndarr<i32, 3>= Ndarr::zeros(&[2,3,4]);
let letter_a = Ndarr::fill("a", &[5]);
let fold = Ndarr::new(data: &[0, 1, 2, 3], shape: [2, 2]).expect("Error initializing");
- linspace, logspace, geomspace
let linear = Ndarr::linspace(0, 9, 10);
assert_eq!(linear,Ndarr::from(0..10));
let logarithmic = Ndarr::logspace(0.,9., 10., 10);
assert!(logarithmic.approx(&Ndarr::from([1.,1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9])));
let geom = Ndarr::geomspace(1.,256., 9);
assert!(geom.approx(&Ndarr::from([1., 2., 4., 8., 16., 32., 64., 128., 256.])));
You can easily create random array of any shape:
//Normal distribution
let arr_norm = NdarrRand::normal(low: 0f32, high: 1f32, shape: [2, 2], Seed: Some(1234));
//Normal distribution
let arr_uniform = NdarrRand::uniform(low: 0f32, high: 1f32, shape: [10], Seed: None);
//Choose between values
let arr_choose = NdarrRand::choose(&[1, 2, 3, 4, 5], [3, 3], Some(1234));
- Arithmetic operation with with scalars
let ones: Ndarr<i32, 2> = Ndarr::ones(&[4,4]);
let twos = ones + 1;
let sixes = twos * 3;
- Arithmetic operation between
Ndarr
s,
let a = Ndarr::from([[1,2],[3,4]]);
let b = Ndarr::from([[1,2],[-3,-4]]);
assert_eq!(a + b, Ndarr::from([[2,4],[0,0]]))
Note: If the shapes are not equal rapl
will automatically broadcast the arrays into a compatible shape (if it exist) and perform the operation.
- Math operations including trigonometric and activation functions.
let x = Ndarr::from([-1.0 , -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0]);
let sin_x = x.sin();
let cos_x = x.cos();
let tanh_x = x.tanh();
let abs_x = x.abs();
let relu_x = x.relu();
- Map function
let a = Ndarr::from([[1,2],[3,4]]);
let mapped = a.map(|x| x*2-1);
- Transpose
let arr = Ndarr::from([[1,2,3],[4,5,6]]);
assert_eq!(arr.shape(), [2,3]);
assert_eq!(arr.clone().t().shape, [3,2]); //transpose
- Reshape
let a = Ndarr::from(1..7).reshape(&[2,3]).unwrap();
- Slice
let arr = Ndarr::from([[1,2],[3,4]]);
assert_eq!(arr.slice_at(1)[0], Ndarr::from([1,3]))
- Reduce
let sum_axis = arr.clone().reduce(1, |x,y| x + y).unwrap();
assert_eq!(sum_axis, Ndarr::from([6, 15])); //sum reduction
- Scan right an left
let s = Ndarr::from([1,2,3]);
let cumsum = s.scanr( 0, |x,y| x + y);
assert_eq!(cumsum, Ndarr::from([1,3,6]));
- Roll
let a = Ndarr::from([[1, 2], [3, 4]]);
assert_eq!(a.roll(1, 1), Ndarr::from([[2, 1], [4, 3]]))
- Generalized matrix multiplication between compatible arrays
use rapl::*
use rapl::ops::{mat_mul};
let a = Ndarr::from(1..7).reshape(&[2,3]).unwrap();
let b = Ndarr::from(1..7).reshape(&[3,2]).unwrap();
let matmul = mat_mul(a, b))
- APL inspired Inner Product.
let a = Ndarr::from(1..7).reshape(&[2,3]).unwrap();
let b = Ndarr::from(1..7).reshape(&[3,2]).unwrap();
let inner = rapl::ops::inner_product(|x,y| x*y, |x,y| x+y, a.clone(), b.clone());
assert_eq!(inner, rapl::ops::mat_mul(a, b))
- Outer Product.
let suits = Ndarr::from(["♣","♠","♥","♦"]);
let ranks = Ndarr::from(["2","3","4","5","6","7","8","9","10","J","Q","K","A"]);
let add_str = |x: &str, y: &str| (x.to_owned() + y);
let deck = ops::outer_product( add_str, ranks, suits).flatten(); //All cards in a deck
You can ergonomically do operations between native numeric types and complex types C<T>
with a simple and clean interface.
use rapl::*;
// Complex sclars
let z = 1 + 2.i();
assert_eq!(z, C(1,2));
assert_eq!(z - 3, -2 + 2.i());
Seamlessly work with complex numbers, and complex tensors.
use rapl::*;
// Complex tensors
let arr = Ndarr::from([1, 2, 3]);
let arr_z = arr + -1 + 2.i();
assert_eq!(arr_z, Ndarr::from([C(0,2), C(1,2), C(2,2)]));
assert_eq!(arr_z.im(), Ndarr::from([2,2,2]));
let signal = Ndarr::linspace(-10., 10., 100).sin();
let signal_fft = signal.to_complex().fft();
You can easily work with images of almost any format. rapl
provides helpful functions to open images as both RGB and Luma Ndarr
, and also save them to your preferred format.
use rapl::*;
use rapl::utils::rapl_img;
fn main() {
//open RGB image as Ndarr<u8,3>
let img: Ndarr<u8,U3> = rapl_img::open_rgbu8(&"image_name.jpg").unwrap();
//Split RGB channels by Slicing along 3'th axis.
let channels: Vec<Ndarr<u8,U2>> = img.slice_at(2);
//select blue channel and save it as black and white image.
channels[2].save_as_luma(&"blue_channel.png", rapl_img::ImageFormat::Png);
}
- Port to stable Rust
- Native support for complex numbers.
- Line space and meshigrid initialization.
- Random array creation.
- 1D and 2D FFT.
- Matrix inversion.
- Image to array conversion.
- Array to image conversion.
- APL-inspired rotate function.
- Commonly use ML functions like Relu, Softmax etc.
- Support for existing plotting libraries in rust.
- Mutable slicing.
- Other Linear algebra functionalities: Eigen, LU, Gauss Jordan, Etc.
- Automatic differentiation.