Given an array of integers nums
and an integer threshold
, we will choose a positive integer divisor
, divide all the array by it, and sum the division's result. Find the smallest divisor
such that the result mentioned above is less than or equal to threshold
.
Each result of the division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3
and 10/2 = 5
).
It is guaranteed that there will be an answer.
Example 1:
Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum of 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2).
Example 2:
Input: nums = [44,22,33,11,1], threshold = 5 Output: 44
Example 3:
Input: nums = [21212,10101,12121], threshold = 1000000 Output: 1
Example 4:
Input: nums = [2,3,5,7,11], threshold = 11 Output: 3
Constraints:
1 <= nums.length <= 5 * 104
1 <= nums[i] <= 106
nums.length <= threshold <= 106
class Solution:
def smallestDivisor(self, nums: List[int], threshold: int) -> int:
left, right = 1, 1000000
while left < right:
mid = (left + right) >> 1
s = 0
for num in nums:
s += (num + mid - 1) // mid
if s <= threshold:
right = mid
else:
left = mid + 1
return left
class Solution {
public int smallestDivisor(int[] nums, int threshold) {
int left = 1, right = 1000000;
while (left < right) {
int mid = (left + right) >> 1;
int s = 0;
for (int num : nums) {
s += (num + mid - 1) / mid;
}
if (s <= threshold) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
class Solution {
public:
int smallestDivisor(vector<int>& nums, int threshold) {
int left = 1, right = 1000000;
while (left < right) {
int mid = left + right >> 1;
int s = 0;
for (int& num : nums) {
s += (num + mid - 1) / mid;
}
if (s <= threshold) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
};
func smallestDivisor(nums []int, threshold int) int {
left, right := 1, 1000000
for left < right {
mid := (left + right) >> 1
s := 0
for _, num := range nums {
s += (num + mid - 1) / mid
}
if s <= threshold {
right = mid
} else {
left = mid + 1
}
}
return left
}