给你一个整数数组 nums
和一个正整数 threshold
,你需要选择一个正整数作为除数,然后将数组里每个数都除以它,并对除法结果求和。
请你找出能够使上述结果小于等于阈值 threshold
的除数中 最小 的那个。
每个数除以除数后都向上取整,比方说 7/3 = 3 , 10/2 = 5 。
题目保证一定有解。
示例 1:
输入:nums = [1,2,5,9], threshold = 6 输出:5 解释:如果除数为 1 ,我们可以得到和为 17 (1+2+5+9)。 如果除数为 4 ,我们可以得到和为 7 (1+1+2+3) 。如果除数为 5 ,和为 5 (1+1+1+2)。
示例 2:
输入:nums = [2,3,5,7,11], threshold = 11 输出:3
示例 3:
输入:nums = [19], threshold = 5 输出:4
提示:
1 <= nums.length <= 5 * 10^4
1 <= nums[i] <= 10^6
nums.length <= threshold <= 10^6
二分查找。
class Solution:
def smallestDivisor(self, nums: List[int], threshold: int) -> int:
left, right = 1, 1000000
while left < right:
mid = (left + right) >> 1
s = 0
for num in nums:
s += (num + mid - 1) // mid
if s <= threshold:
right = mid
else:
left = mid + 1
return left
class Solution {
public int smallestDivisor(int[] nums, int threshold) {
int left = 1, right = 1000000;
while (left < right) {
int mid = (left + right) >> 1;
int s = 0;
for (int num : nums) {
s += (num + mid - 1) / mid;
}
if (s <= threshold) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
class Solution {
public:
int smallestDivisor(vector<int>& nums, int threshold) {
int left = 1, right = 1000000;
while (left < right) {
int mid = left + right >> 1;
int s = 0;
for (int& num : nums) {
s += (num + mid - 1) / mid;
}
if (s <= threshold) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
};
func smallestDivisor(nums []int, threshold int) int {
left, right := 1, 1000000
for left < right {
mid := (left + right) >> 1
s := 0
for _, num := range nums {
s += (num + mid - 1) / mid
}
if s <= threshold {
right = mid
} else {
left = mid + 1
}
}
return left
}