Skip to content

ISCAS007/PaperReading

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 

Repository files navigation

PaperReading

Computer Vision Paper Reading for ISCAS

Reference

实测:163邮箱,教育网邮箱,QQ邮箱可以注册,国科大邮箱可以直接登录。 如果点击注册没有反应,建议使用最新版本chrome浏览器。

Group Information

A 王佳欣 杜肖冰 吴通通 程坚
B 刘舫 张拯明 曲文天 陈科圻
C 左德鑫 石玥 陈紫檀 宋建成
D 林泽一 朱倩 左然 李锦瑶

next time

2019/08/19 A组

2019/07/09 A组

2019/05/20 B组

2019/04/08 A组

2019/01/24 D组

2019/01/10 B组

2018/12/21组 D组

2018/12/13 C组

2018/11/30 A组

  • [Adaptive O-CNN A Patch-based Deep Representation of 3D Shapes]朱玉影 pdf ppt

Abstract: the author present an Adaptive Octree-based Convolutional Neural Network (Adaptive O-CNN) for efficient 3D shape encoding and decoding

  • 窦毅琨
  • 杜肖冰

2018/10/19 D组

2018/10/12 C组

  • [Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics] 王佳欣 pdf ppt author

2018/09/14 A组

Abstract: limited by dataset,we can do human pose detection problem to get 2d heatmap or do regression problem to get 3d joints coordinate.So in this survey, I introduce three paper solve human pose estimation problem in three ways,i)rgb->2d heatmap(2d joints),ii)rgb->3d joints(3d heatmap),iii)2d joints->3d joints.

2018/09/07 E组

2018/08/31 D组

2018/08/24 B组

2018/08/10 A组

  • HandMap: Robust Hand Pose Estimation via Intermediate Dense Guidance Map Supervision pdf / ppt 朱玉影

Abstract: we can solve hand pose estimation problem as regression problem which regress joints location(xyz coordinates) or classification(detection/localization) problem which show its probility in input image or voxels for each joint. So we can combine two solution and introduce in dense guidance map as intermediate predictions. So this paper design seveal guidance map and show its addvantage in experiments.

2018/07/20 E组

2018/06/22 A组

  • Stacked Hourglass Networks 朱玉影

Learning to Estimate 3D Human Pose and Shape from a Single Color Image PPT/PDF Stacked Hourglass Networks for Human Pose Estimation PDF/tensorflow_code

  • 杜肖冰

2018/06/15 E组

  • 朱倩 左然(临时调换)
  • 曲文天
  • 张拯明 (临时分配到E组)

2018/06/08 D组

  • ECGLens 左然 朱倩(临时调换)
  • 左德鑫

2018/06/01 C组

2018/05/25 B组

  • 刘舫
  • 张拯明
  • 晁文涛

2018/05/21 A组

Abstract: BodyNet is an end-to-end trainable network for human shape estimation that benefits from (i) a volumetric 3D loss, (ii) a multi-view re-projection loss, and (iii) intermediate supervision of 2D pose, 2D body part segmentation, and 3D pose.

2018/05/14

2018/05/07

2018/04/23

2018/04/15

2018/04/09

2018/04/02

2018/03/23

2018/03/18

2018/03/11

  • DracNets pptx 王佳欣 slides
  • DiracNets: Training Very Deep Neural Networks Without Skip-Connections 2018

2018/02/27

2018/01/08

2018/01/02

2017 review

About

Computer Vision Paper Reading for ISCAS

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •