Skip to content

Commit

Permalink
Use fftconvolve instead of np.correlate in cross_correlation_histogram (
Browse files Browse the repository at this point in the history
NeuralEnsemble#273)

* cch np.correlate -> fftconvolve

* moved internal functions in cross_correlation_histogram to a separate class

* added BinnedSpikeTrain.get_num_of_spikes() function

* added BinnedSpikeTrain.binarize() function
  • Loading branch information
dizcza authored Nov 19, 2019
1 parent 059ccf5 commit de077d6
Show file tree
Hide file tree
Showing 4 changed files with 347 additions and 253 deletions.
82 changes: 55 additions & 27 deletions elephant/conversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -425,8 +425,6 @@ def __init__(self, spiketrains, binsize=None, num_bins=None, t_start=None,
self.t_stop = t_stop
self.num_bins = num_bins
self.binsize = binsize
self.matrix_columns = self.num_bins
self.matrix_rows = len(spiketrains)
# Empty matrix for storage, time points matrix
self._mat_u = None
# Variables to store the sparse matrix
Expand All @@ -444,12 +442,20 @@ def __init__(self, spiketrains, binsize=None, num_bins=None, t_start=None,

if self.is_spiketrain:
n_spikes = sum(map(len, spiketrains))
n_spikes_binned = sum(map(len, self.spike_indices))
n_spikes_binned = self.get_num_of_spikes()
if n_spikes != n_spikes_binned:
warnings.warn("Binning discarded {n} last spike(s) in the "
"input spiketrain.".format(
n=n_spikes - n_spikes_binned))

@property
def matrix_rows(self):
return self._sparse_mat_u.shape[0]

@property
def matrix_columns(self):
return self._sparse_mat_u.shape[1]

# =========================================================================
# There are four cases the given parameters must fulfill
# Each parameter must be a combination of following order or it will raise
Expand All @@ -458,7 +464,7 @@ def __init__(self, spiketrains, binsize=None, num_bins=None, t_start=None,
# t_start, num_bins, t_stop
# t_start, bin_size, t_stop
# t_stop, num_bins, binsize
# ==========================================================================
# =========================================================================

def _check_init_params(self, binsize, num_bins, t_start, t_stop):
"""
Expand Down Expand Up @@ -495,8 +501,6 @@ def _check_init_params(self, binsize, num_bins, t_start, t_stop):
self.t_stop = _calc_tstop(num_bins, binsize, t_start)
elif num_bins is None:
self.num_bins = _calc_num_bins(binsize, t_start, t_stop)
if self.matrix_columns is None:
self.matrix_columns = self.num_bins
elif binsize is None:
self.binsize = _calc_binsize(num_bins, t_start, t_stop)

Expand Down Expand Up @@ -672,6 +676,30 @@ def to_sparse_bool_array(self):
tmp_mat[tmp_mat.nonzero()] = 1
return tmp_mat.astype(bool)

def get_num_of_spikes(self, axis=None):
"""
Compute the number of binned spikes.
Parameters
----------
axis : int, optional
If `None`, compute the total num. of spikes.
Otherwise, compute num. of spikes along axis.
If axis is `1`, compute num. of spikes per spike train (row).
Default is `None`.
Returns
-------
int or np.ndarray
The number of binned spikes.
"""
if axis is None:
return self._sparse_mat_u.sum(axis=axis)
n_spikes_per_row = self._sparse_mat_u.sum(axis=axis)
n_spikes_per_row = np.asarray(n_spikes_per_row)[:, 0]
return n_spikes_per_row

@property
def spike_indices(self):
"""
Expand All @@ -693,16 +721,15 @@ def spike_indices(self):
[[0, 0, 1, 3, 4, 5, 6]]
>>> print(x.to_sparse_array().nonzero()[1])
[0 1 3 4 5 6]
>>> print(x.to_array())
[[2, 1, 0, 1, 1, 1, 1, 0, 0, 0]]
"""
spike_idx = []
for row in self._sparse_mat_u:
n_cols = []
# Extract each non-zeros column index and how often it exists,
# i.e., how many spikes fall in this column
for col, count in zip(row.nonzero()[1], row.data):
# Append the column index for each spike
n_cols.extend([col] * count)
n_cols = np.repeat(row.indices, row.data)
spike_idx.append(n_cols)
return spike_idx

Expand Down Expand Up @@ -799,16 +826,22 @@ def _store_array(self):
"""
if self._mat_u is None:
self._mat_u = self.to_sparse_array().toarray()
self._mat_u = self._sparse_mat_u.toarray()

def remove_stored_array(self):
"""
Removes the matrix with counted time points from memory.
Unlinks the matrix with counted time points from memory.
"""
self._mat_u = None

def binarize(self):
"""
In-place clipping the internal array to have 0 or 1 values.
"""
self._sparse_mat_u.data.clip(max=1, out=self._sparse_mat_u.data)
if self._mat_u is not None:
del self._mat_u
self._mat_u = None
self._mat_u.clip(max=1, out=self._mat_u)

def _convert_to_binned(self, spiketrains):
"""
Expand All @@ -826,11 +859,7 @@ def _convert_to_binned(self, spiketrains):
self._sparse_mat_u = sps.csr_matrix(spiketrains, dtype=int)
return

from distutils.version import StrictVersion
# column
filled = []
# row
indices = []
row_ids, column_ids = [], []
# data
counts = []
for idx, elem in enumerate(spiketrains):
Expand All @@ -842,12 +871,12 @@ def _convert_to_binned(self, spiketrains):
filled_tmp = scale[la]
filled_tmp = filled_tmp[filled_tmp < self.num_bins]
f, c = np.unique(filled_tmp, return_counts=True)
filled.extend(f)
column_ids.extend(f)
counts.extend(c)
indices.extend([idx] * len(f))
csr_matrix = sps.csr_matrix((counts, (indices, filled)),
shape=(self.matrix_rows,
self.matrix_columns),
row_ids.extend([idx] * len(f))
csr_matrix = sps.csr_matrix((counts, (row_ids, column_ids)),
shape=(len(spiketrains),
self.num_bins),
dtype=int)
self._sparse_mat_u = csr_matrix

Expand All @@ -860,10 +889,9 @@ def _check_neo_spiketrain(matrix):
if isinstance(matrix, neo.SpikeTrain):
return True
# Check for list or tuple
elif isinstance(matrix, (list, tuple)):
if isinstance(matrix, (list, tuple)):
return all(map(_check_neo_spiketrain, matrix))
else:
return False
return False


def _check_binned_array(matrix):
Expand Down
Loading

0 comments on commit de077d6

Please sign in to comment.