-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add scripts fot training on the association task
- Loading branch information
1 parent
1836cf0
commit f55e9ea
Showing
7 changed files
with
795 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,252 @@ | ||
"""Creates the data for the image association tasks.""" | ||
|
||
import os | ||
import pathlib | ||
|
||
import numpy as np | ||
import tensorflow as tf | ||
|
||
from utils import image_manipulation | ||
|
||
|
||
def load_data(timesteps, pad_equal=False, merge=False, data_dir='data', seed=42): | ||
pad_equal = True if merge else pad_equal | ||
|
||
if not os.path.exists(data_dir): | ||
os.makedirs(data_dir) | ||
|
||
suffix = '_{0}{1}.npy'.format(timesteps, '_merged' if merge else '') | ||
|
||
x_train_files = [] | ||
x_test_files = [] | ||
if merge: | ||
for i in ['_a', '_b']: | ||
x_train_files.append(pathlib.Path(data_dir, 'x_train' + i + suffix)) | ||
x_test_files.append(pathlib.Path(data_dir, 'x_test' + i + suffix)) | ||
else: | ||
for i in ['_a', '_b', '_c']: | ||
x_train_files.append(pathlib.Path(data_dir, 'x_train' + i + suffix)) | ||
x_test_files.append(pathlib.Path(data_dir, 'x_test' + i + suffix)) | ||
|
||
y_train_file = pathlib.Path(data_dir, 'y_train' + suffix) | ||
y_test_file = pathlib.Path(data_dir, 'y_test' + suffix) | ||
|
||
cifar10_train, cifar10_test = _get_cifar10_dataset() | ||
mnist_train, mnist_test = _get_mnist_dataset(num_channels=1) | ||
|
||
if not all([f.is_file() for f in x_train_files]) or not y_train_file.is_file(): | ||
x_train, y_train = _combine_data(cifar10_train, mnist_train, pad_equal) | ||
x_train, y_train = _create_dataset(x_train, y_train, timesteps, merge, seed) | ||
|
||
for i in range(len(x_train_files)): | ||
np.save(x_train_files[i], x_train[i]) | ||
np.save(y_train_file, y_train) | ||
|
||
x_train = [] | ||
for i in range(len(x_train_files)): | ||
x_train.append(np.load(x_train_files[i], mmap_mode=None)[:12500]) | ||
y_train = np.load(y_train_file, mmap_mode=None)[:12500] | ||
|
||
if not all([f.is_file() for f in x_test_files]) or not y_test_file.is_file(): | ||
x_test, y_test = _combine_data(cifar10_test, mnist_test, pad_equal) | ||
x_test, y_test = _create_dataset(x_test, y_test, timesteps, merge, seed) | ||
|
||
for i in range(len(x_test_files)): | ||
np.save(x_test_files[i], x_test[i]) | ||
np.save(y_test_file, y_test) | ||
|
||
x_test = [] | ||
for i in range(len(x_test_files)): | ||
x_test.append(np.load(x_test_files[i], mmap_mode=None)[:2230]) | ||
y_test = np.load(y_test_file, mmap_mode=None)[:2230] | ||
|
||
return (x_train, y_train), (x_test, y_test) | ||
|
||
|
||
def _create_dataset(features, labels, timesteps, merge, seed): | ||
features_a, features_b = features | ||
|
||
num_classes = np.unique(labels).size | ||
shape_a = features_a.shape[1:] | ||
shape_b = features_b.shape[1:] | ||
|
||
features_a = np.reshape(features_a, (-1, num_classes) + shape_a, order='F') | ||
features_b = np.reshape(features_b, (-1, num_classes) + shape_b, order='F') | ||
labels = np.reshape(labels, (-1, num_classes), order='F') | ||
|
||
a1, a2 = np.split(features_a, (timesteps * len(features_a) // (timesteps+1), )) | ||
b1, b2 = np.split(features_b, (timesteps * len(features_b) // (timesteps+1), )) | ||
y1, y2 = np.split(labels, (timesteps * len(labels) // (timesteps+1), )) | ||
|
||
a1 = np.reshape(a1, (-1, timesteps) + shape_a) | ||
a2 = np.reshape(a2, (-1, ) + shape_a) | ||
b1 = np.reshape(b1, (-1, timesteps) + shape_b) | ||
y1 = np.reshape(y1, (-1, timesteps)) | ||
y2 = np.reshape(y2, (-1, )) | ||
|
||
a1 = a1[:len(a1) // num_classes * num_classes] | ||
b1 = b1[:len(a1) // num_classes * num_classes] | ||
y1 = y1[:len(a1) // num_classes * num_classes] | ||
|
||
cols = [] | ||
for i in range(y1.shape[1]): | ||
cols.append(np.unique(y1[:, i])) | ||
unique_cols = np.unique(cols, axis=0) | ||
|
||
x_a = a1 | ||
x_b = b1 | ||
|
||
# Targets are always the first `len(a1) // len(unique_cols)` elements in each timestep. We shuffle it | ||
# afterwards. | ||
y = -1 * np.ones(y1.shape[0], dtype=y1.dtype) | ||
x_c = np.zeros((a1.shape[0], ) + a2.shape[1:]) | ||
target_mask = np.zeros(y1.shape, dtype=y1.dtype) | ||
for j, col in enumerate(unique_cols): | ||
for i in col: | ||
idc = np.nonzero(y1[:, j] == i)[0][:a1.shape[0] // num_classes] | ||
y[idc + j * a1.shape[0] // len(unique_cols)] = i | ||
|
||
target_mask[idc + j * a1.shape[0] // len(unique_cols), j] = 1 | ||
|
||
idc2 = np.nonzero(y2 == i)[0][:a1.shape[0] // num_classes] | ||
x_c[idc + j * a1.shape[0] // len(unique_cols)] = a2[idc2] | ||
|
||
rows = np.split(np.indices(y1.shape)[0], | ||
np.arange(num_classes // timesteps, len(y1), num_classes // timesteps)) | ||
cols = np.split(np.indices(y1.shape)[1], | ||
np.arange(num_classes // timesteps, len(y1), num_classes // timesteps)) | ||
|
||
def shuffle_cols(cols, seed): | ||
return np.array([np.random.RandomState(seed=seed).permutation(c) for c in cols]) | ||
|
||
def shuffle_rows(rows, seed): | ||
y = rows.shape[1] | ||
tmp = rows | ||
for i in range(y): | ||
tmp[:, i] = np.random.RandomState(seed=seed+i).permutation(rows[:, i]) | ||
|
||
return tmp | ||
|
||
row_list_a, row_list_b = [], [] | ||
col_list_a, col_list_b = [], [] | ||
for i, (r, c) in enumerate(zip(rows, cols)): | ||
row_list_a.append(shuffle_rows(r, seed=seed*(i+1))) | ||
col_list_a.append(shuffle_cols(c, seed=seed*(i+2))) | ||
|
||
row_list_b.append(shuffle_rows(r, seed=seed*(i+3))) | ||
col_list_b.append(shuffle_cols(c, seed=seed*(i+4))) | ||
|
||
rows_a = np.concatenate(row_list_a) | ||
cols_a = np.concatenate(col_list_a) | ||
|
||
rows_b = np.concatenate(row_list_b) | ||
cols_b = np.concatenate(col_list_b) | ||
|
||
x_a = x_a[rows_a, cols_a] | ||
y_a = y1[rows_a, cols_a] | ||
if timesteps > 1: | ||
x_b = x_b[rows_b, cols_b] | ||
y_b = y1[rows_b, cols_b] | ||
else: | ||
y_b = y1 | ||
x_c = np.stack([x_c] * timesteps, axis=1) | ||
x_c = x_c[rows_a, cols_a] | ||
|
||
target_mask = target_mask[rows_a, cols_a] | ||
x_c = x_c[np.nonzero(target_mask == 1)] | ||
y = y_b[np.nonzero(target_mask == 1)] | ||
|
||
idc = np.random.RandomState(seed=seed+10).permutation(y.shape[0]) | ||
x_a = x_a[idc] | ||
x_b = x_b[idc] | ||
x_c = x_c[idc] | ||
y_a = y_a[idc] | ||
y_b = y_b[idc] | ||
y = y[idc] | ||
|
||
if merge: | ||
x_ab = [] | ||
for a, b in zip(x_a.reshape((-1,) + x_a.shape[2:]), x_b.reshape((-1,) + x_b.shape[2:])): | ||
x_ab.append(image_manipulation.merge(a, b)) | ||
|
||
x_ab = np.array(x_ab).reshape((-1, timesteps) + x_ab[0].shape) | ||
|
||
pad_width = ((0, 0), (0, x_c.shape[2]), (0, 0)) | ||
x_c = image_manipulation.pad(x_c, pad_width=pad_width) | ||
|
||
return (x_ab, x_c), y | ||
else: | ||
return (x_a, x_b, x_c), y | ||
|
||
|
||
def _combine_data(a, b, pad): | ||
features_a, labels_a = a | ||
features_b, labels_b = b | ||
|
||
labels_a = labels_a.flatten() | ||
labels_b = labels_b.flatten() | ||
|
||
num_classes_a = np.unique(labels_a).size | ||
num_classes_b = np.unique(labels_b).size | ||
min_num_examples_a = min(np.unique(labels_a, return_counts=True)[1]) | ||
min_num_examples_b = min(np.unique(labels_b, return_counts=True)[1]) | ||
|
||
assert num_classes_a == num_classes_b | ||
|
||
pad_width_dim1_a = pad_width_dim1_b = pad_width_dim2_a = pad_width_dim2_b = 0 | ||
if pad: | ||
if features_a.shape[1] > features_b.shape[1]: | ||
pad_width_dim1_b = (features_a.shape[1] - features_b.shape[1]) // 2 | ||
if features_a.shape[1] < features_b.shape[1]: | ||
pad_width_dim1_a = (features_b.shape[1] - features_a.shape[1]) // 2 | ||
if features_a.shape[2] > features_b.shape[2]: | ||
pad_width_dim2_b = (features_a.shape[2] - features_b.shape[2]) // 2 | ||
if features_a.shape[2] < features_b.shape[2]: | ||
pad_width_dim2_a = (features_b.shape[2] - features_a.shape[2]) // 2 | ||
|
||
x_a = [] | ||
x_b = [] | ||
y = [] | ||
for i in range(num_classes_a): | ||
idc_a = np.where(labels_a == i)[0] | ||
idc_b = np.where(labels_b == i)[0] | ||
num = min(idc_a.size, idc_b.size, min_num_examples_a, min_num_examples_b) | ||
x_a.append(features_a[idc_a[:num]]) | ||
x_b.append(features_b[idc_b[:num]]) | ||
y.append(labels_a[idc_a[:num]]) | ||
|
||
x_a = np.concatenate(x_a) | ||
x_b = np.concatenate(x_b) | ||
y = np.concatenate(y) | ||
|
||
pad_width_a = ((pad_width_dim1_a, pad_width_dim1_a), (pad_width_dim2_a, pad_width_dim2_a), (0, 0)) | ||
pad_width_b = ((pad_width_dim1_b, pad_width_dim1_b), (pad_width_dim2_b, pad_width_dim2_b), (0, 0)) | ||
x_a = image_manipulation.pad(x_a, pad_width=pad_width_a) | ||
x_b = image_manipulation.pad(x_b, pad_width=pad_width_b) | ||
|
||
return (x_a, x_b), y | ||
|
||
|
||
def _get_mnist_dataset(num_channels=1, pad_width=((0, 0), (0, 0), (0, 0))): | ||
mnist = tf.keras.datasets.mnist | ||
(x_train, y_train), (x_test, y_test) = mnist.load_data() | ||
x_train, x_test = x_train / 255.0, x_test / 255.0 | ||
if num_channels == 1: | ||
x_train = x_train[..., tf.newaxis] | ||
x_test = x_test[..., tf.newaxis] | ||
else: | ||
x_train = image_manipulation.expand_channels(x_train, num_channels=num_channels) | ||
x_test = image_manipulation.expand_channels(x_test, num_channels=num_channels) | ||
|
||
x_train = image_manipulation.pad(x_train, pad_width) | ||
x_test = image_manipulation.pad(x_test, pad_width) | ||
|
||
return (x_train, y_train), (x_test, y_test) | ||
|
||
|
||
def _get_cifar10_dataset(): | ||
cifar10 = tf.keras.datasets.cifar10 | ||
(x_train, y_train), (x_test, y_test) = cifar10.load_data() | ||
x_train, x_test = x_train / 255.0, x_test / 255.0 | ||
|
||
return (x_train, y_train.flatten()), (x_test, y_test.flatten()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -5,6 +5,4 @@ channels: | |
|
||
dependencies: | ||
- python=3.7 | ||
- pip | ||
- pip: | ||
- tensorflow==2.1 | ||
- tensorflow-gpu=2.1 |
Oops, something went wrong.