Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Semiquant: Add spline knots to the optimization result #1314

Merged
merged 9 commits into from
Mar 7, 2024
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions doc/example/semiquantitative_data.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -431,7 +431,10 @@
" )\n",
"\n",
" plot_splines_from_inner_result(\n",
" inner_problem, inner_solvers[minimal_diff], results[minimal_diff]\n",
" inner_problem,\n",
" inner_solvers[minimal_diff],\n",
" results[minimal_diff],\n",
" sim=[simulation],\n",
" )\n",
" plt.show()"
]
Expand Down Expand Up @@ -467,7 +470,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
"version": "3.10.10"
},
"vscode": {
"interpreter": {
Expand Down
2 changes: 1 addition & 1 deletion pypesto/C.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,6 @@ class EnsembleType(Enum):
INNER_PARAMETERS = "inner_parameters"
INNER_RDATAS = "inner_rdatas"
PARAMETER_TYPE = "parameterType"
X_INNER_OPT = "x_inner_opt"
RELATIVE = "relative"


Expand Down Expand Up @@ -207,6 +206,7 @@ class InnerParameterType(str, Enum):
MIN_SIM_RANGE = 1e-16

SPLINE_PAR_TYPE = "spline"
SPLINE_KNOTS = "spline_knots"
N_SPLINE_PARS = "n_spline_pars"
DATAPOINTS = "datapoints"
MIN_DATAPOINT = "min_datapoint"
Expand Down
19 changes: 14 additions & 5 deletions pypesto/hierarchical/inner_calculator_collector.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,10 @@
RES,
SEMIQUANTITATIVE,
SPLINE_APPROXIMATION_OPTIONS,
SPLINE_KNOTS,
SPLINE_RATIO,
SRES,
X_INNER_OPT,
InnerParameterType,
ModeType,
)
from ..objective.amici.amici_calculator import AmiciCalculator
Expand Down Expand Up @@ -107,6 +108,7 @@ def __init__(
self.quantitative_data_mask = self._get_quantitative_data_mask(edatas)

self._known_least_squares_safe = False
self.semiquant_observable_ids = None

def initialize(self):
"""Initialize."""
Expand Down Expand Up @@ -177,6 +179,12 @@ def construct_inner_calculators(
semiquant_problem.get_noise_dummy_values(scaled=True)
)
self.inner_calculators.append(semiquant_calculator)
self.semiquant_observable_ids = [
model.getObservableIds()[group - 1]
for group in semiquant_problem.get_groups_for_xs(
InnerParameterType.SPLINE
)
]

if self.data_types - {
RELATIVE,
Expand Down Expand Up @@ -382,7 +390,7 @@ def __call__(
nllh, snllh, s2nllh, chi2, res, sres = init_return_values(
sensi_orders, mode, dim
)
all_inner_pars = {}
spline_knots = None
interpretable_inner_pars = []

# set order in solver
Expand Down Expand Up @@ -421,7 +429,7 @@ def __call__(
RES: res,
SRES: sres,
RDATAS: rdatas,
X_INNER_OPT: all_inner_pars,
SPLINE_KNOTS: None,
INNER_PARAMETERS: None,
}
ret[FVAL] = np.inf
Expand Down Expand Up @@ -473,10 +481,11 @@ def __call__(
if 1 in sensi_orders:
snllh += inner_result[GRAD]

all_inner_pars.update(inner_result[X_INNER_OPT])
inner_pars = inner_result.get(INNER_PARAMETERS)
if inner_pars is not None:
interpretable_inner_pars.extend(inner_pars)
if SPLINE_KNOTS in inner_result:
spline_knots = inner_result[SPLINE_KNOTS]

# add the quantitative data contribution
if self.quantitative_data_mask is not None:
Expand Down Expand Up @@ -507,7 +516,7 @@ def __call__(
# Add inner parameters to return dict
# only if the objective value improved.
if ret[FVAL] < self.best_fval:
ret[X_INNER_OPT] = all_inner_pars
ret[SPLINE_KNOTS] = spline_knots
ret[INNER_PARAMETERS] = (
interpretable_inner_pars
if len(interpretable_inner_pars) > 0
Expand Down
8 changes: 1 addition & 7 deletions pypesto/hierarchical/ordinal/calculator.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@
RDATAS,
RES,
SRES,
X_INNER_OPT,
)
from ...objective.amici.amici_calculator import (
AmiciCalculator,
Expand Down Expand Up @@ -126,7 +125,7 @@ def __call__(
Returns
-------
inner_result:
A dict containing the calculation results: FVAL, GRAD, RDATAS and X_INNER_OPT.
A dict containing the calculation results: FVAL, GRAD, RDATAS.
"""
if mode == MODE_RES:
raise ValueError(
Expand Down Expand Up @@ -178,7 +177,6 @@ def __call__(
RES: res,
SRES: sres,
RDATAS: rdatas,
X_INNER_OPT: self.inner_problem.get_inner_parameter_dictionary(),
}

# if any amici simulation failed, it's unlikely we can compute
Expand All @@ -201,13 +199,9 @@ def __call__(
inner_result[FVAL] = self.inner_solver.calculate_obj_function(
x_inner_opt
)
inner_result[
X_INNER_OPT
] = self.inner_problem.get_inner_parameter_dictionary()

# calculate analytical gradients if requested
if sensi_order > 0:
# print([opt['fun'] for opt in x_inner_opt])
sy = [rdata[AMICI_SY] for rdata in rdatas]
ssigma = [rdata[AMICI_SSIGMAY] for rdata in rdatas]
inner_result[GRAD] = self.inner_solver.calculate_gradients(
Expand Down
5 changes: 1 addition & 4 deletions pypesto/hierarchical/relative/calculator.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,6 @@
RDATAS,
RES,
SRES,
X_INNER_OPT,
ModeType,
)
from ...objective.amici.amici_calculator import (
Expand Down Expand Up @@ -123,7 +122,7 @@ def __call__(
Returns
-------
inner_result:
A dict containing the calculation results: FVAL, GRAD, RDATAS and X_INNER_OPT.
A dict containing the calculation results: FVAL, GRAD, RDATAS and INNER_PARAMETERS.
"""
if not self.inner_problem.check_edatas(edatas=edatas):
raise ValueError(
Expand Down Expand Up @@ -164,8 +163,6 @@ def __call__(
rdatas=rdatas,
)

inner_result[X_INNER_OPT] = {}

inner_result[INNER_PARAMETERS] = (
np.array(
[
Expand Down
10 changes: 4 additions & 6 deletions pypesto/hierarchical/semiquantitative/calculator.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,8 @@
MODE_RES,
RDATAS,
RES,
SPLINE_KNOTS,
SRES,
X_INNER_OPT,
)
from ...objective.amici.amici_calculator import (
AmiciCalculator,
Expand Down Expand Up @@ -119,7 +119,8 @@ def __call__(
Returns
-------
inner_result:
A dict containing the calculation results: FVAL, GRAD, RDATAS and X_INNER_OPT.
A dict containing the calculation results: FVAL, GRAD, RDATAS,
INNER_PARAMETERS, and SPLINE_KNOTS.
"""
if mode == MODE_RES:
raise ValueError(
Expand Down Expand Up @@ -175,7 +176,6 @@ def __call__(
RES: res,
SRES: sres,
RDATAS: rdatas,
X_INNER_OPT: self.inner_problem.get_inner_parameter_dictionary(),
}

# if any amici simulation failed, it's unlikely we can compute
Expand All @@ -198,9 +198,7 @@ def __call__(
inner_result[FVAL] = self.inner_solver.calculate_obj_function(
x_inner_opt
)
inner_result[
X_INNER_OPT
] = self.inner_problem.get_inner_parameter_dictionary()
inner_result[SPLINE_KNOTS] = self.inner_problem.get_spline_knots()

inner_result[
INNER_PARAMETERS
Expand Down
44 changes: 44 additions & 0 deletions pypesto/hierarchical/semiquantitative/problem.py
Original file line number Diff line number Diff line change
Expand Up @@ -205,6 +205,50 @@ def get_inner_parameter_dictionary(self) -> dict:
inner_par_dict[x_id] = x.value
return inner_par_dict

def get_spline_knots(
self,
) -> list[list[np.ndarray[float], np.ndarray[float]]]:
"""Get spline knots of all semiquantitative observables.

Returns
-------
list[list[np.ndarray[float], np.ndarray[float]]]
A list of lists with two arrays. Each list in the first level corresponds
to a semiquantitative observable. Each of these lists contains two arrays:
the first array contains the spline bases, the second array contains the
spline knot values. The ordering of the observable lists is the same
as in `pypesto.problem.hierarchical.semiquant_observable_ids`.
"""
# We need the solver only for the rescaling function.
from .solver import SemiquantInnerSolver

all_spline_knots = []

for group in self.get_groups_for_xs(InnerParameterType.SPLINE):
group_dict = self.groups[group]
n_spline_pars = group_dict[N_SPLINE_PARS]
n_data_points = group_dict[NUM_DATAPOINTS]

inner_pars = np.array(
[x.value for x in self.get_xs_for_group(group)]
)

# Utility matrix for the spline knot calculation
lower_trian = np.tril(np.ones((n_spline_pars, n_spline_pars)))
knot_values = np.dot(lower_trian, inner_pars)

_, knot_bases, _ = SemiquantInnerSolver._rescale_spline_bases(
sim_all=group_dict[CURRENT_SIMULATION],
N=n_spline_pars,
K=n_data_points,
)

spline_knots_for_observable = [knot_bases, knot_values]

all_spline_knots.append(spline_knots_for_observable)

return all_spline_knots

def get_measurements_for_group(self, gr) -> np.ndarray:
"""Get measurements for a group."""
# Taking the ixs of first inner parameter since
Expand Down
3 changes: 2 additions & 1 deletion pypesto/hierarchical/semiquantitative/solver.py
Original file line number Diff line number Diff line change
Expand Up @@ -440,7 +440,8 @@ def inner_gradient_wrapper(x):

return results

def _rescale_spline_bases(self, sim_all: np.ndarray, N: int, K: int):
@staticmethod
def _rescale_spline_bases(sim_all: np.ndarray, N: int, K: int):
"""Rescale the spline bases.

Before the optimization of the spline parameters, we have to fix the
Expand Down
5 changes: 0 additions & 5 deletions pypesto/history/csv.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@
RES,
SRES,
TIME,
X_INNER_OPT,
ModeType,
X,
)
Expand Down Expand Up @@ -155,10 +154,6 @@ def _update_trace(
else:
row[(var, np.nan)] = np.nan

if X_INNER_OPT in result:
for x_inner_id, x_inner_opt_value in result[X_INNER_OPT].items():
row[(X_INNER_OPT, x_inner_id)] = x_inner_opt_value

self._trace = pd.concat(
(self._trace, pd.DataFrame([row])),
)
Expand Down
7 changes: 6 additions & 1 deletion pypesto/objective/amici/amici.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
MODE_FUN,
MODE_RES,
RDATAS,
SPLINE_KNOTS,
SUFFIXES_CSV,
SUFFIXES_HDF5,
ModeType,
Expand Down Expand Up @@ -232,8 +233,9 @@ def __init__(
# `set_custom_timepoints` method for more information.
self.custom_timepoints = None

# Initialize the dictionary for saving of inner parameters.
# Initialize the list for saving of inner parameter values.
self.inner_parameters: list[float] = None
self.spline_knots: list[list[list[float]]] = None

def get_config(self) -> dict:
"""Return basic information of the objective configuration."""
Expand Down Expand Up @@ -504,6 +506,9 @@ def call_unprocessed(
if ret.get(INNER_PARAMETERS, None) is not None:
self.inner_parameters = ret[INNER_PARAMETERS]

if ret.get(SPLINE_KNOTS, None) is not None:
self.spline_knots = ret[SPLINE_KNOTS]

# check whether we should update data for preequilibration guesses
if (
self.guess_steadystate
Expand Down
8 changes: 7 additions & 1 deletion pypesto/optimize/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
import numpy as np
import scipy.optimize

from ..C import FVAL, GRAD, INNER_PARAMETERS, MODE_FUN, MODE_RES
from ..C import FVAL, GRAD, INNER_PARAMETERS, MODE_FUN, MODE_RES, SPLINE_KNOTS
from ..history import HistoryOptions, NoHistory, OptimizerHistory
from ..objective import Objective
from ..problem import Problem
Expand Down Expand Up @@ -68,6 +68,12 @@ def wrapped_minimize(
):
result[INNER_PARAMETERS] = problem.objective.inner_parameters

if (
hasattr(problem.objective, SPLINE_KNOTS)
and problem.objective.spline_knots is not None
):
result[SPLINE_KNOTS] = problem.objective.spline_knots

return result

return wrapped_minimize
Expand Down
9 changes: 9 additions & 0 deletions pypesto/problem/hierarchical.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,11 @@ class HierarchicalProblem(Problem):
Only relevant if hierarchical is True. Contains the bounds of easily
interpretable inner parameters only, e.g. noise parameters, scaling
factors, offsets.
semiquant_observable_ids:
The ids of semiquantitative observables. Only relevant if hierarchical
is True. If not None, the optimization result's `spline_knots` will be
a list of lists of spline knots for each semiquantitative observable in
the order of these ids.
"""

def __init__(
Expand Down Expand Up @@ -70,3 +75,7 @@ def __init__(

self.inner_lb = np.array(inner_lb)
self.inner_ub = np.array(inner_ub)

self.semiquant_observable_ids = (
self.objective.calculator.semiquant_observable_ids
)
1 change: 1 addition & 0 deletions pypesto/result/optimize.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,6 +117,7 @@ def __init__(
self.optimizer = optimizer
self.free_indices = None
self.inner_parameters = None
self.spline_knots = None

def __getattr__(self, key):
try:
Expand Down
Loading
Loading