Skip to content

Commit

Permalink
Minor fixups ensembles (#568)
Browse files Browse the repository at this point in the history
* fixup in chunk sizing and handng over of parameter mappings, fixes a bug which may yield to incorrect predictions if using of chunk size

* allow passing on of umap parameters tothe umap routines

* make user-defined fields of amici return data available to postprocessors

Co-authored-by: Dilan Pathirana <[email protected]>
  • Loading branch information
paulstapor and dilpath authored Feb 22, 2021
1 parent 3e765d9 commit 160c2a8
Show file tree
Hide file tree
Showing 7 changed files with 56 additions and 19 deletions.
19 changes: 13 additions & 6 deletions pypesto/ensemble/dimension_reduction.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,10 +16,12 @@
def get_umap_representation_parameters(
ens: Ensemble,
n_components: int = 2,
normalize_data: bool = False) -> Tuple:
normalize_data: bool = False,
**kwargs) -> Tuple:
"""
Compute the representation with reduced dimensionality via umap
(with a given number of umap components) of the parameter ensemble.
Allows to pass on additional keyword arguments to the umap routine.
Parameters
==========
Expand All @@ -46,18 +48,21 @@ def get_umap_representation_parameters(
return _get_umap_representation_lowlevel(
dataset=ens.x_vectors.transpose(),
n_components=n_components,
normalize_data=normalize_data
normalize_data=normalize_data,
**kwargs
)


def get_umap_representation_predictions(
ens: Union[Ensemble, EnsemblePrediction],
prediction_index: int = 0,
n_components: int = 2,
normalize_data: bool = False) -> Tuple:
normalize_data: bool = False,
**kwargs) -> Tuple:
"""
Compute the representation with reduced dimensionality via umap
(with a given number of umap components) of the ensemble predictions.
Allows to pass on additional keyword arguments to the umap routine.
Parameters
==========
Expand Down Expand Up @@ -92,7 +97,8 @@ def get_umap_representation_predictions(
return _get_umap_representation_lowlevel(
dataset=dataset,
n_components=n_components,
normalize_data=normalize_data
normalize_data=normalize_data,
**kwargs
)


Expand Down Expand Up @@ -197,7 +203,8 @@ def get_pca_representation_predictions(
def _get_umap_representation_lowlevel(
dataset: np.ndarray,
n_components: int = 2,
normalize_data: bool = False) -> Tuple:
normalize_data: bool = False,
**kwargs) -> Tuple:
"""
Compute the representation with reduced dimensionality via principal
component analysis (with a given number of principal components) of the
Expand Down Expand Up @@ -230,7 +237,7 @@ def _get_umap_representation_lowlevel(
"""

# create a umap object
umap_object = umap.UMAP(n_components=n_components)
umap_object = umap.UMAP(n_components=n_components, **kwargs)

# normalize data with mean and standard deviation if wanted
if normalize_data:
Expand Down
2 changes: 1 addition & 1 deletion pypesto/ensemble/ensemble.py
Original file line number Diff line number Diff line change
Expand Up @@ -294,7 +294,7 @@ def __init__(self,
# store bounds
self.lower_bound = np.full((self.n_x,), np.nan)
if lower_bound is not None:
if len(lower_bound) == 1:
if np.array(lower_bound).size == 1:
self.lower_bound = np.full((x_vectors.shape[0],), lower_bound)
else:
self.lower_bound = lower_bound
Expand Down
7 changes: 5 additions & 2 deletions pypesto/objective/amici.py
Original file line number Diff line number Diff line change
Expand Up @@ -296,7 +296,8 @@ def check_sensi_orders(self, sensi_orders, mode) -> bool:
def check_mode(self, mode):
return mode in [MODE_FUN, MODE_RES]

def call_unprocessed(self, x, sensi_orders, mode, edatas=None):
def call_unprocessed(self, x, sensi_orders, mode, edatas=None,
parameter_mapping=None):
sensi_order = max(sensi_orders)

x_dct = self.par_arr_to_dct(x)
Expand All @@ -309,11 +310,13 @@ def call_unprocessed(self, x, sensi_orders, mode, edatas=None):

if edatas is None:
edatas = self.edatas
if parameter_mapping is None:
parameter_mapping = self.parameter_mapping
ret = self.calculator(
x_dct=x_dct, sensi_order=sensi_order, mode=mode,
amici_model=self.amici_model, amici_solver=self.amici_solver,
edatas=edatas, n_threads=self.n_threads,
x_ids=self.x_ids, parameter_mapping=self.parameter_mapping,
x_ids=self.x_ids, parameter_mapping=parameter_mapping,
fim_for_hess=self.fim_for_hess,
)

Expand Down
5 changes: 5 additions & 0 deletions pypesto/petab/importer.py
Original file line number Diff line number Diff line change
Expand Up @@ -272,6 +272,7 @@ def create_objective(

def create_prediction(self,
objective: AmiciObjective = None,
amici_output_fields: Sequence[str] = None,
post_processor: Union[Callable, None] = None,
post_processor_sensi: Union[Callable, None] = None,
post_processor_time: Union[Callable, None] = None,
Expand All @@ -285,6 +286,9 @@ def create_prediction(self,
----------
objective:
An objective object, which will be used to get model simulations
amici_output_fields:
keys that exist in the return data object from AMICI, which should
be available for the post-processors
post_processor:
A callable function which applies postprocessing to the simulation
results. Default are the observables of the amici model.
Expand Down Expand Up @@ -343,6 +347,7 @@ def create_prediction(self,
# wrap around AmiciPredictor
predictor = AmiciPredictor(
amici_objective=objective,
amici_output_fields=amici_output_fields,
post_processor=post_processor,
post_processor_sensi=post_processor_sensi,
post_processor_time=post_processor_time,
Expand Down
36 changes: 27 additions & 9 deletions pypesto/prediction/amici_predictor.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import numpy as np
from typing import Sequence, Union, Callable, Tuple, List
from copy import deepcopy

from .constants import (MODE_FUN, OBSERVABLE_IDS, TIMEPOINTS, OUTPUT,
OUTPUT_SENSI, CSV, H5, AMICI_T, AMICI_X, AMICI_SX,
Expand All @@ -25,6 +26,7 @@ class AmiciPredictor:
"""
def __init__(self,
amici_objective: AmiciObjective,
amici_output_fields: Union[Sequence[str], None] = None,
post_processor: Union[Callable, None] = None,
post_processor_sensi: Union[Callable, None] = None,
post_processor_time: Union[Callable, None] = None,
Expand All @@ -39,6 +41,9 @@ def __init__(self,
----------
amici_objective:
An objective object, which will be used to get model simulations
amici_output_fields:
keys that exist in the return data object from AMICI, which should
be available for the post-processors
post_processor:
A callable function which applies postprocessing to the simulation
results and possibly defines different observables than those of
Expand Down Expand Up @@ -83,12 +88,23 @@ def __init__(self,
self.post_processor_time = post_processor_time
self.condition_ids = condition_ids

# If the user takes care of everything we can skip default readouts
self.skip_default_outputs = False
if post_processor is not None and post_processor_sensi is not None \
and post_processor_time is not None:
self.skip_default_outputs = True

if observable_ids is None:
self.observable_ids = \
amici_objective.amici_model.getObservableIds()
else:
self.observable_ids = observable_ids

if amici_output_fields is None:
amici_output_fields = [AMICI_STATUS, AMICI_T, AMICI_X, AMICI_Y,
AMICI_SX, AMICI_SY]
self.amici_output_fields = amici_output_fields

def __call__(
self,
x: np.ndarray,
Expand Down Expand Up @@ -223,7 +239,8 @@ def _get_outputs(self,
# call amici
self._wrap_call_to_amici(
amici_outputs=amici_outputs, x=x, sensi_orders=sensi_orders,
mode=mode, edatas=self.amici_objective.edatas[ids])
parameter_mapping=self.amici_objective.parameter_mapping[ids],
edatas=self.amici_objective.edatas[ids], mode=mode)

def _default_output(amici_outputs):
"""
Expand Down Expand Up @@ -261,7 +278,8 @@ def _default_output(amici_outputs):
return timepoints, outputs, outputs_sensi

# Get default output
timepoints, outputs, outputs_sensi = _default_output(amici_outputs)
if not self.skip_default_outputs:
timepoints, outputs, outputs_sensi = _default_output(amici_outputs)

# postprocess (use original Amici outputs)
if self.post_processor is not None:
Expand All @@ -274,19 +292,19 @@ def _default_output(amici_outputs):
return timepoints, outputs, outputs_sensi

def _wrap_call_to_amici(self, amici_outputs, x, sensi_orders, mode,
edatas):
parameter_mapping, edatas):
"""
The only purpose of this function is to encapsulate the call to amici:
This allows to use variable scoping as a mean to clean up the memory
after calling amici, which is beneficial if large models with large
datasets are used.
"""
chunk = self.amici_objective(x=x, sensi_orders=sensi_orders, mode=mode,
parameter_mapping=parameter_mapping,
edatas=edatas, return_dict=True)
for rdata in chunk[RDATAS]:
amici_outputs.append({AMICI_STATUS: rdata[AMICI_STATUS],
AMICI_T: rdata[AMICI_T],
AMICI_X: rdata[AMICI_X],
AMICI_SX: rdata[AMICI_SX],
AMICI_Y: rdata[AMICI_Y],
AMICI_SY: rdata[AMICI_SY]})
amici_outputs.append({
output_field: deepcopy(rdata[output_field])
for output_field in self.amici_output_fields
})
del chunk
1 change: 1 addition & 0 deletions pypesto/prediction/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@

OBSERVABLE_IDS = 'observable_ids' # data member in PredictionConditionResult
PARAMETER_IDS = 'x_names' # data member in PredictionConditionResult
CONDITION_IDS = 'condition_ids'
TIMEPOINTS = 'timepoints' # data member in PredictionConditionResult
OUTPUT = 'output' # field in the return dict of AmiciPredictor
OUTPUT_SENSI = 'output_sensi' # field in the return dict of AmiciPredictor
Expand Down
5 changes: 4 additions & 1 deletion pypesto/prediction/prediction.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
import os

from .constants import (OBSERVABLE_IDS, PARAMETER_IDS, TIMEPOINTS, OUTPUT,
OUTPUT_SENSI, TIME, CSV)
OUTPUT_SENSI, TIME, CSV, CONDITION_IDS)


class PredictionConditionResult:
Expand Down Expand Up @@ -207,6 +207,9 @@ def write_to_h5(self,
if self.conditions and self.conditions[0].x_names is not None:
f.create_dataset(os.path.join(base, PARAMETER_IDS),
data=self.conditions[0].x_names)
if self.condition_ids is not None:
f.create_dataset(os.path.join(base, CONDITION_IDS),
data=self.condition_ids)
for i_cond, cond in enumerate(self.conditions):
# each conditions gets a group of its own
f.create_group(os.path.join(base, str(i_cond)))
Expand Down

0 comments on commit 160c2a8

Please sign in to comment.