MOB-GCN: Multiscale Object-Based Graph Neural Network for Hyperspectral Image Segmentation and Classification
- Tuan-Anh Yang
- Truong-Son Hy (PI)
- Phuong Dao (PI)
We use six benchmark HSI datasets to evaluate our approach, which have the following characteristics. INDIAN, SALINAS, PAVIA, BOTSWANA, KENNEDY can be found at Hyperspectral Remote Sensing Scenes and TORONT (UT-HSI-301) can be found at University of Toronto HSI-301 Dataset.
Create virtual environment
py -m venv .venv
.venv\Scripts\activate
Installing modules
pip install -r requirements.txt
Load Experiments with Training (GCN)
py experiment_gcn.py --dataset INDIAN --segmentation_size 10 --training
Load Experiments without Training, assuming trained before (GCN)
py experiment_gcn.py --dataset INDIAN --segmentation_size 10
Inference (GCN)
py inference_gcn.py ---dataset INDIAN --segmentation_size 10 --weights_path output/INDIAN/experiment/gcn_model.pth --output_path output/INDIAN
Load Experiments with Training (MOB-GCN)
py experiment_mgn.py --dataset INDIAN --segmentation_size 10 --training
Load Experiments without Training, assuming trained before (MOB-GCN)
py experiment_mgn.py --dataset INDIAN --segmentation_size 10
Find optimal scales for MOB-GCN inference
py optimal_scale.py --dataset INDIAN --segmentation_size 10
Inference (MOB-GCN)
py inference_mgn.py ---dataset INDIAN --segmentation_size 10 --weights_path output/INDIAN/experiment/gcn_model.pth --output_path output/INDIAN --num_clusters 33,28,22,13,4
Benchmarking GCN, MOB-GCN (with num_classes
) and MOB-GCN (with optimal scales)
py benchmark.py --dataset INDIAN --segmentation_size 10 --sample_size 0.05 --num_clusters 33,28,22,13,4