forked from xuanzic/NeMo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add some mamba recipe * add 130m * add the rest of the recipes * add tokenizer * add tokenizer * minor fix * minor fix * minor fix * minor fix * minor fix * minor fix * minor fix * minor fix * minor fix * minor fix * minor fix * add fixes to ssm for nemorun recipes * add hybrid tokenizer * updating some recipes * Apply isort and black reformatting Signed-off-by: JRD971000 <[email protected]> * remove comments * update gbs * fix ckpt resume * fix ckpt resume * fix ckpt resume * update recipes final * Apply isort and black reformatting Signed-off-by: JRD971000 <[email protected]> * remove redundant imports * ckpt convertor dtype fix * Apply isort and black reformatting Signed-off-by: JRD971000 <[email protected]> --------- Signed-off-by: JRD971000 <[email protected]> Signed-off-by: Ali Taghibakhshi <[email protected]> Co-authored-by: JRD971000 <[email protected]>
- Loading branch information
Showing
11 changed files
with
2,281 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,321 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
from typing import Optional | ||
|
||
import nemo_run as run | ||
import pytorch_lightning as pl | ||
import torch | ||
from megatron.core.distributed import DistributedDataParallelConfig | ||
from pytorch_lightning.callbacks.callback import Callback | ||
|
||
from nemo import lightning as nl | ||
from nemo.collections import llm | ||
from nemo.collections.llm.api import finetune, pretrain | ||
from nemo.collections.llm.gpt.data.mock import MockDataModule | ||
from nemo.collections.llm.recipes.log.default import default_log, default_resume, tensorboard_logger | ||
from nemo.collections.llm.recipes.optim.adam import distributed_fused_adam_with_cosine_annealing | ||
from nemo.collections.llm.recipes.precision.mixed_precision import bf16_mixed | ||
from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer | ||
from nemo.utils.exp_manager import TimingCallback | ||
|
||
NAME = "mamba2_130m" | ||
|
||
|
||
@run.cli.factory(name=NAME) | ||
def tokenizer(tokenizer_model: str = None) -> run.Config[pl.LightningModule]: | ||
|
||
return run.Config( | ||
get_nmt_tokenizer, | ||
library='huggingface', | ||
model_name="EleutherAI/gpt-neox-20b", | ||
tokenizer_model=tokenizer_model, | ||
use_fast=True, | ||
) | ||
|
||
|
||
@run.cli.factory(name=NAME) | ||
def model(tokenizer_model: str = None) -> run.Config[pl.LightningModule]: | ||
""" | ||
Factory function to create a Mamba2 130M model configuration. | ||
Returns: | ||
run.Config[pl.LightningModule]: Configuration for the Mamba2 130M model. | ||
Examples: | ||
CLI usage: | ||
$ nemo llm pretrain model=mamba2_130m ... | ||
Python API usage: | ||
>>> model_config = model() | ||
>>> print(model_config) | ||
""" | ||
return run.Config( | ||
llm.GPTModel, config=run.Config(llm.BaseMambaConfig130M), tokenizer=tokenizer(tokenizer_model=tokenizer_model) | ||
) | ||
|
||
|
||
def trainer( | ||
tensor_parallelism: int = 1, | ||
pipeline_parallelism: int = 1, | ||
pipeline_parallelism_type: Optional[torch.dtype] = None, | ||
virtual_pipeline_parallelism: Optional[int] = None, | ||
context_parallelism: int = 1, | ||
sequence_parallelism: bool = False, | ||
num_nodes: int = 1, | ||
num_gpus_per_node: int = 8, | ||
max_steps: int = 1168251, | ||
callbacks: Optional[list[run.Config[Callback]]] = None, | ||
) -> run.Config[nl.Trainer]: | ||
""" | ||
Configure the NeMo Lightning Trainer for Mamba2 130M model. | ||
This function sets up the distributed training strategy and other training parameters. | ||
Args: | ||
tensor_parallelism (int): Degree of tensor model parallelism. | ||
pipeline_parallelism (int): Degree of pipeline model parallelism. | ||
pipeline_parallelism_type (Optional[torch.dtype]): Data type for pipeline parallelism. | ||
virtual_pipeline_parallelism (Optional[int]): Size of virtual pipeline parallelism. | ||
context_parallelism (int): Degree of context parallelism. | ||
sequence_parallelism (bool): Whether to use sequence parallelism. | ||
num_nodes (int): Number of compute nodes to use. | ||
num_gpus_per_node (int): Number of GPUs per node. | ||
max_steps (int): Maximum number of training steps. | ||
callbacks (Optional[list[run.Config[Callback]]]): List of callback configurations. | ||
Returns: | ||
run.Config[nl.Trainer]: Configuration for the NeMo Lightning Trainer. | ||
Examples: | ||
CLI usage: | ||
$ nemo llm pretrain trainer=mamba2_130m ... | ||
Python API usage: | ||
>>> trainer_config = trainer(num_nodes=1, num_gpus_per_node=1) | ||
>>> print(trainer_config) | ||
Note: | ||
For more information on distributed training strategies, refer to the | ||
NeMo documentation on multi-GPU and multi-node training. | ||
""" | ||
strategy = run.Config( | ||
nl.MegatronStrategy, | ||
tensor_model_parallel_size=tensor_parallelism, | ||
pipeline_model_parallel_size=pipeline_parallelism, | ||
pipeline_dtype=pipeline_parallelism_type, | ||
virtual_pipeline_model_parallel_size=virtual_pipeline_parallelism, | ||
context_parallel_size=context_parallelism, | ||
sequence_parallel=sequence_parallelism, | ||
gradient_as_bucket_view=True, | ||
ckpt_async_save=False, | ||
ckpt_parallel_load=True, | ||
ddp=run.Config( | ||
DistributedDataParallelConfig, | ||
check_for_nan_in_grad=True, | ||
grad_reduce_in_fp32=True, | ||
overlap_grad_reduce=True, | ||
overlap_param_gather=True, | ||
), | ||
) | ||
|
||
trainer = run.Config( | ||
nl.Trainer, | ||
accelerator="gpu", | ||
accumulate_grad_batches=1, | ||
callbacks=callbacks, | ||
devices=num_gpus_per_node, | ||
limit_test_batches=50, | ||
limit_val_batches=32, | ||
log_every_n_steps=10, | ||
max_steps=max_steps, | ||
num_nodes=num_nodes, | ||
plugins=bf16_mixed(), | ||
strategy=strategy, | ||
use_distributed_sampler=False, | ||
val_check_interval=2000, | ||
) | ||
|
||
return trainer | ||
|
||
|
||
@run.cli.factory(target=pretrain, name=NAME) | ||
def pretrain_recipe( | ||
dir: Optional[str] = None, | ||
name: str = "default", | ||
tokenizer_model: str = None, | ||
num_nodes: int = 1, | ||
num_gpus_per_node: int = 8, | ||
fn=pretrain, | ||
) -> run.Partial: | ||
""" | ||
Create a pre-training recipe for Mamba2 130M model. | ||
This function sets up a complete configuration for pre-training, including | ||
model, trainer, data, logging, optimization, and resumption settings. | ||
Args: | ||
dir (Optional[str]): Directory for saving logs and checkpoints. | ||
name (str): Name of the pre-training run. | ||
num_nodes (int): Number of compute nodes to use. | ||
num_gpus_per_node (int): Number of GPUs per node. | ||
fn (Callable): The pre-training function to use. | ||
Returns: | ||
run.Partial: Partial configuration for pre-training. | ||
Examples: | ||
CLI usage: | ||
$ nemo llm pretrain --factory mamba2_130M | ||
$ nemo llm pretrain --factory "mamba2_130M(num_nodes=1, name='my_pretrain')" | ||
Python API usage: | ||
>>> recipe = pretrain_recipe(name="mamba2_130M_pretrain", num_nodes=1) | ||
>>> print(recipe) | ||
Note: | ||
For more details on pre-training LLMs with NeMo, see the pre-training | ||
guide in the `examples/llm/pretrain/` directory. | ||
""" | ||
return run.Partial( | ||
fn, | ||
model=model(), | ||
trainer=trainer( | ||
num_nodes=num_nodes, | ||
num_gpus_per_node=num_gpus_per_node, | ||
callbacks=[run.Config(TimingCallback)], | ||
), | ||
data=run.Config( | ||
MockDataModule, | ||
seq_length=4096, | ||
global_batch_size=8, | ||
micro_batch_size=1, | ||
tokenizer=tokenizer(tokenizer_model=tokenizer_model), | ||
), | ||
log=default_log(dir=dir, name=name, tensorboard_logger=tensorboard_logger(name=name)), | ||
optim=distributed_fused_adam_with_cosine_annealing(max_lr=3e-4), | ||
resume=default_resume(), | ||
) | ||
|
||
|
||
@run.cli.factory(target=finetune, name=NAME) | ||
def finetune_recipe( | ||
dir: Optional[str] = None, | ||
name: str = "default", | ||
resume_path: str = None, | ||
tokenizer_model: str = None, | ||
num_nodes: int = 1, | ||
num_gpus_per_node: int = 8, | ||
gbs: int = 8, | ||
mbs: int = 1, | ||
peft_scheme: Optional[str] = 'none', | ||
) -> run.Partial: | ||
""" | ||
Create a fine-tuning recipe for Mamba2 130M model. | ||
This function sets up a complete configuration for fine-tuning, including | ||
model, trainer, data, logging, optimization, and resumption settings. | ||
Args: | ||
dir (Optional[str]): Directory for saving logs and checkpoints. | ||
name (str): Name of the fine-tuning run. | ||
resume_path (str): Path to the NeMo checkpoint (refer to notes below | ||
on how to convert a pytorch checkpoint to NeMo) | ||
tokenizer_model (str): Path to tokenizer model (defaults to None) | ||
num_nodes (int): Number of compute nodes to use. | ||
num_gpus_per_node (int): Number of GPUs per node. | ||
Returns: | ||
run.Partial: Partial configuration for fine-tuning. | ||
Examples: | ||
CLI usage: | ||
$ nemo llm finetune --factory mamba2_130m | ||
Python API usage: | ||
>>> recipe = finetune_recipe(name="mamba2_130m_finetune", num_nodes=1) | ||
>>> print(recipe) | ||
Note: | ||
This recipe uses the SQuAD dataset for fine-tuning. For more information | ||
on fine-tuning LLMs with NeMo, see the fine-tuning guide in the | ||
`examples/llm/finetune/` directory. | ||
For converting an SSM pytorch checkpoint, use the following line of python code: | ||
llm.GPTModel(llm.BaseMambaConfig130M(), tokenizer=tokenizer()).import_ckpt( | ||
path="pytorch://ABSOLUTE_PATH_TO_CKPT/your_pytorch_state_dict_file", | ||
model_config=llm.BaseMambaConfig130M()) | ||
This line will cache the nemo checkpoint to following directory: | ||
/root/.cache/nemo/models/your_pytorch_state_dict_file | ||
""" | ||
nemo_resume = run.Config( | ||
nl.AutoResume, | ||
restore_config=run.Config(nl.RestoreConfig, path=resume_path), | ||
) | ||
strategy = run.Config( | ||
nl.MegatronStrategy, | ||
tensor_model_parallel_size=1, | ||
pipeline_model_parallel_size=1, | ||
gradient_as_bucket_view=True, | ||
ckpt_load_optimizer=False, | ||
ckpt_save_optimizer=False, | ||
ckpt_async_save=False, | ||
) | ||
checkpoint_callback = run.Config( | ||
nl.ModelCheckpoint, | ||
every_n_train_steps=10, | ||
dirpath=dir, | ||
) | ||
trainer = run.Config( | ||
nl.Trainer, | ||
accelerator="gpu", | ||
accumulate_grad_batches=1, | ||
devices=num_gpus_per_node, | ||
limit_test_batches=10, | ||
limit_val_batches=10, | ||
log_every_n_steps=20, | ||
max_steps=100, | ||
num_nodes=num_nodes, | ||
plugins=run.Config( | ||
nl.MegatronMixedPrecision, | ||
precision="bf16-mixed", | ||
params_dtype=torch.bfloat16, | ||
), | ||
callbacks=[checkpoint_callback], | ||
strategy=strategy, | ||
use_distributed_sampler=False, | ||
val_check_interval=20, | ||
) | ||
recipe = run.Partial( | ||
llm.finetune, | ||
model=model(tokenizer_model=tokenizer_model), | ||
trainer=trainer, | ||
data=run.Config( | ||
llm.SquadDataModule, | ||
seq_length=2048, | ||
global_batch_size=gbs, | ||
micro_batch_size=mbs, | ||
tokenizer=tokenizer(tokenizer_model=tokenizer_model), | ||
), | ||
log=llm.default_log(dir=dir, name=name, tensorboard_logger=tensorboard_logger(name=name)), | ||
optim=distributed_fused_adam_with_cosine_annealing(max_lr=1e-4, min_lr=0, warmup_steps=50), | ||
resume=nemo_resume, | ||
) | ||
if peft_scheme is None or peft_scheme.lower() == 'none': | ||
recipe.trainer.strategy.tensor_model_parallel_size = 1 | ||
recipe.optim.config.lr = 5e-6 | ||
else: | ||
raise ValueError(f"Unrecognized peft scheme: {peft_scheme}") | ||
return recipe |
Oops, something went wrong.