Skip to content
/ ASPS Public

[MICCAI 2024] Repository for "ASPS: Augmented Segment Anything Model for Polyp Segmentation"

Notifications You must be signed in to change notification settings

HuiqianLi/ASPS

Repository files navigation

News

2024/6/25: 🎉Our method was accepted by MICCAI 2024.

2024/5/21: Add data loader for Skin Lesion Segmentation (ISIC2017).

Requirements

Install the dependencies of SAM.

Install mmcv-full for CNN encoder.

conda create --name ASPS python=3.8
conda activate ASPS
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116
pip install mmcv-full==1.6.2 -f https://download.openmmlab.com/mmcv/dist/cu116/torch1.12/index.html

pip install tqdm
pip install opencv-python
pip install albumentations==1.3.0

Dataset

We conduct extensive experiments on five polyp segmentation datasets following PraNet.

For skin lesion segmentation: following EGE-UNet, needing to modify from dataset.Segmentation_other to from dataset.Segmentation_isic both in train.py and infer.py.

Training

We used train.py to train our framework.

The --exp_name is the name of the experiment, and --polyp_dir is the path to the training dataset.

python train.py --exp_name '0308_E_L' --polyp_dir "polyp_seg/TrainDataset/"

Evaluating

We used infer.py to evaluate our framework.

The --dataset_name is the name of the dataset, and --test_seg_dir is the path to the testing dataset.

python infer.py --exp_name '0308_E_L' --dataset_name 'CVC-300'  --test_seg_dir "polyp_seg/TestDataset/CVC-300/"   
python infer.py --exp_name '0308_E_L' --dataset_name 'CVC-ClinicDB'  --test_seg_dir "polyp_seg/TestDataset/CVC-ClinicDB/"   
python infer.py --exp_name '0308_E_L' --dataset_name 'CVC-ColonDB'  --test_seg_dir "polyp_seg/TestDataset/CVC-ColonDB/"   
python infer.py --exp_name '0308_E_L' --dataset_name 'ETIS-LaribPolypDB'  --test_seg_dir "polyp_seg/TestDataset/ETIS-LaribPolypDB/"   
python infer.py --exp_name '0308_E_L' --dataset_name 'Kvasir'  --test_seg_dir "polyp_seg/TestDataset/Kvasir/"  

You can directly run the train.sh to train and evaluate our framework.

Note: If using SUN_SEG dataset, the training and evaluating codes are in 'scripts/'.

Visualize and Inference

To inference single image or visualize the results, run vis.py.

raw image pred mask GT
10 10 gt

Checkpoints

Note: Baidu(9myy)

Name Repo Download Password
MSCAN-B SegNeXt https://rec.ustc.edu.cn/share/4c1d2ab0-344e-11ef-b416-0bee023cca0f 31tz
MSCAN-L SegNeXt https://rec.ustc.edu.cn/share/18e3cd80-344e-11ef-bbf4-79b40a1f9d5c pl1v
SAM-B-ASPS https://rec.ustc.edu.cn/share/5e9be4b0-344a-11ef-a151-6b2a0b8eedb8 li92
SAM-H-ASPS https://rec.ustc.edu.cn/share/fc3da400-344a-11ef-b1d5-932017a40fd5 3w0g
EfficientSAM-ASPS EfficientSAM https://rec.ustc.edu.cn/share/c9696fb0-344a-11ef-b24f-3f1e0faf0fb9 xoqh

Citation

@article{li2024asps,
  title={ASPS: Augmented Segment Anything Model for Polyp Segmentation},
  author={Li, Huiqian and Zhang, Dingwen and Yao, Jieru and Han, Longfei and Li, Zhongyu and Han, Junwei},
  journal={arXiv preprint arXiv:2407.00718},
  year={2024}
}

About

[MICCAI 2024] Repository for "ASPS: Augmented Segment Anything Model for Polyp Segmentation"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published