Version 1.1.3.9000 built 2022-05-03 with R 4.2.0 (development version not on CRAN).
The package provides data sets (internal .rda
and in
CSV-format in
/extdata/
) supporting users in a black-box performance qualification
(PQ) of their software installations. Users can analyze own data
imported from CSV-
and Excel-files (in xlsx
or the legacy xls
format). The methods
given by the EMA for
reference-scaling of
HVD(P)s,
i.e., Average Bioequivalence with Expanding Limits
(ABEL)1,2 are
implemented.
Potential influence of outliers on the variability of
the reference can be assessed by box plots of studentized and
standardized residuals as suggested at a joint
EGA/EMA
workshop.3
Health Canada’s
approach4 requiring a mixed-effects model is
approximated by intra-subject contrasts.
Direct widening of the acceptance range as recommended by the Gulf
Cooperation Council5 (Bahrain, Kuwait, Oman,
Qatar, Saudi Arabia, United Arab Emirates) is provided as well.
In full replicate designs the variability of test and reference
treatments can be assessed by swT/swR and the
upper confidence limit of σwT/σwR. This was
required in a pilot phase by the
WHO but lifted in 2021;
reference-scaling of AUC is acceptable if the protocol is submitted to
the
PQT/MED.6
Called internally by functions method.A()
and method.B()
. A linear
model of log-transformed pharmacokinetic (PK) responses and effects
sequence, subject(sequence), period
where all effects are fixed (i.e., by an
ANOVA). Estimated by the
function lm()
of package stats
.
modCVwR <- lm(log(PK) ~ sequence + subject %in% sequence + period,
data = data[data$treatment == "R", ])
modCVwT <- lm(log(PK) ~ sequence + subject %in% sequence + period,
data = data[data$treatment == "T", ])
Called by function method.A()
. A linear model of log-transformed
PK responses and effects
sequence, subject(sequence), period, treatment
where all effects are fixed (e.g., by an
ANOVA). Estimated by the
function lm()
of package stats
.
modA <- lm(log(PK) ~ sequence + subject %in% sequence + period + treatment,
data = data)
Called by function method.B()
. A linear model of log-transformed
PK responses and effects
sequence, subject(sequence), period, treatment
where subject(sequence) is a random effect and all others are
fixed.
Three options are provided:
- Estimation by the function
lmer()
of packagelmerTest
.method.B(..., option = 1)
employs Satterthwaite’s approximation of the degrees of freedom equivalent to SAS’DDFM=SATTERTHWAITE
, Phoenix WinNonlin’sDegrees of Freedom Satterthwaite
, and Stata’sdfm=Satterthwaite
. Note that this is the only available approximation in SPSS.
modB <- lmer(log(PK) ~ sequence + period + treatment + (1|subject),
data = data)
- Estimation by the function
lme()
of packagenlme
.method.B(..., option = 2)
employs degrees of freedom equivalent to SAS’DDFM=CONTAIN
, Phoenix WinNonlin’sDegrees of Freedom Residual
, STATISTICA’sGLM containment
, and Stata’sdfm=anova
. Implicitly preferred according to the EMA’s Q&A document and hence, the default of the function.
modB <- lme(log(PK) ~ sequence + period + treatment, random = ~1|subject,
data = data)
- Estimation by the function
lmer()
of packagelmerTest
.method.B(..., option = 3)
employs the Kenward-Roger approximation equivalent to Stata’sdfm=Kenward Roger (EIM)
and SAS’DDFM=KENWARDROGER(FIRSTORDER)
i.e., based on the expected information matrix. Note that SAS withDDFM=KENWARDROGER
and JMP calculate Satterthwaite’s [sic] degrees of freedom and apply the Kackar-Harville correction, i.e., based on the observed information matrix.
modB <- lmer(log(PK) ~ sequence + period + treatment + (1|subject),
data = data)
Called by function ABE()
. The model is identical to
Method A. Conventional BE limits (80.00 – 125.00%) are
employed by default. Tighter limits (90.00 – 111.11%) for narrow
therapeutic index drugs
(EMA and others) or wider
limits (75.00 – 133.33%) for Cmax according to the
guideline of South Africa7 can be specified.
TRTR | RTRT
TRRT | RTTR
TTRR | RRTT
TRTR | RTRT | TRRT | RTTR
TRRT | RTTR | TTRR | RRTT
TRT | RTR
TRR | RTT
TR | RT | TT | RR
(Balaam’s design; not recommended due to
poor power characteristics)
TRR | RTR | RRT
TRR | RTR
(Extra-reference design; biased in the presence of
period effects, not recommended)
Details about the reference datasets:
help("data", package = "replicateBE")
?replicateBE::data
Results of the 30 reference datasets agree with ones obtained in SAS (v9.4), Phoenix WinNonlin (v6.4 – v8.3.4.295), STATISTICA (v13), SPSS (v22.0), Stata (v15.0), and JMP (v10.0.2).8
- Evaluation of the internal reference dataset 019 by Method A.
library(replicateBE) # attach the package
res <- method.A(verbose = TRUE, details = TRUE,
print = FALSE, data = rds01)
#
# Data set DS01: Method A by lm()
# ───────────────────────────────────
# Type III Analysis of Variance Table
#
# Response: log(PK)
# Df Sum Sq Mean Sq F value Pr(>F)
# sequence 1 0.0077 0.007652 0.00268 0.9588496
# period 3 0.6984 0.232784 1.45494 0.2278285
# treatment 1 1.7681 1.768098 11.05095 0.0010405
# sequence:subject 75 214.1296 2.855061 17.84467 < 2.22e-16
# Residuals 217 34.7190 0.159995
#
# treatment T – R:
# Estimate Std. Error t value Pr(>|t|)
# 0.14547400 0.04650870 3.12788000 0.00200215
# 217 Degrees of Freedom
cols <- c(12, 17:21) # extract relevant columns
# cosmetics: 2 decimal places acc. to the GL
tmp <- data.frame(as.list(sprintf("%.2f", res[cols])))
names(tmp) <- names(res)[cols]
tmp <- cbind(tmp, res[22:24]) # pass|fail
print(tmp, row.names = FALSE)
# CVwR(%) L(%) U(%) CL.lo(%) CL.hi(%) PE(%) CI GMR BE
# 46.96 71.23 140.40 107.11 124.89 115.66 pass pass pass
- The same dataset evaluated by Method B, Satterthwaite approximation of degrees of freedom.
res <- method.B(option = 1, verbose = TRUE, details = TRUE,
print = FALSE, data = rds01)
#
# Data set DS01: Method B (option = 1) by lmer()
# ──────────────────────────────────────────────
# Response: log(PK)
# Type III Analysis of Variance Table with Satterthwaite's method
# Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
# sequence 0.001917 0.001917 1 74.7208 0.01198 0.9131536
# period 0.398078 0.132693 3 217.1188 0.82881 0.4792840
# treatment 1.579332 1.579332 1 216.9386 9.86464 0.0019197
#
# treatment T – R:
# Estimate Std. Error t value Pr(>|t|)
# 0.1460900 0.0465130 3.1408000 0.0019197
# 216.939 Degrees of Freedom (equivalent to SAS’ DDFM=SATTERTHWAITE)
cols <- c(12, 17:21)
tmp <- data.frame(as.list(sprintf("%.2f", res[cols])))
names(tmp) <- names(res)[cols]
tmp <- cbind(tmp, res[22:24])
print(tmp, row.names = FALSE)
# CVwR(%) L(%) U(%) CL.lo(%) CL.hi(%) PE(%) CI GMR BE
# 46.96 71.23 140.40 107.17 124.97 115.73 pass pass pass
- The same dataset evaluated by Method B, Kenward-Roger approximation of degrees of freedom. Outlier assessment, recalculation of CVwR after exclusion of outliers, new expanded limits.
res <- method.B(option = 3, ola = TRUE, verbose = TRUE,
details = TRUE, print = FALSE, data = rds01)
#
# Outlier analysis
# (externally) studentized residuals
# Limits (2×IQR whiskers): -1.717435, 1.877877
# Outliers:
# subject sequence stud.res
# 45 RTRT -6.656940
# 52 RTRT 3.453122
#
# standarized (internally studentized) residuals
# Limits (2×IQR whiskers): -1.69433, 1.845333
# Outliers:
# subject sequence stand.res
# 45 RTRT -5.246293
# 52 RTRT 3.214663
#
# Data set DS01: Method B (option = 3) by lmer()
# ──────────────────────────────────────────────
# Response: log(PK)
# Type III Analysis of Variance Table with Kenward-Roger's method
# Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
# sequence 0.001917 0.001917 1 74.9899 0.01198 0.9131528
# period 0.398065 0.132688 3 217.3875 0.82878 0.4792976
# treatment 1.579280 1.579280 1 217.2079 9.86432 0.0019197
#
# treatment T – R:
# Estimate Std. Error t value Pr(>|t|)
# 0.1460900 0.0465140 3.1408000 0.0019197
# 217.208 Degrees of Freedom (equivalent to Stata’s dfm=Kenward Roger EIM)
cols <- c(27, 31:32, 19:21)
tmp <- data.frame(as.list(sprintf("%.2f", res[cols])))
names(tmp) <- names(res)[cols]
tmp <- cbind(tmp, res[22:24])
print(tmp, row.names = FALSE)
# CVwR.rec(%) L.rec(%) U.rec(%) CL.lo(%) CL.hi(%) PE(%) CI GMR BE
# 32.16 78.79 126.93 107.17 124.97 115.73 pass pass pass
- The same dataset evaluated according to the conditions of the GCC (if CVwR > 30% widened limits 75.00 – 133.33%, GMR-constraint 80.00 – 125.00%).
res <- method.A(regulator = "GCC", details = TRUE,
print = FALSE, data = rds01)
cols <- c(12, 17:21)
tmp <- data.frame(as.list(sprintf("%.2f", res[cols])))
names(tmp) <- names(res)[cols]
tmp <- cbind(tmp, res[22:24])
print(tmp, row.names = FALSE)
# CVwR(%) L(%) U(%) CL.lo(%) CL.hi(%) PE(%) CI GMR BE
# 46.96 75.00 133.33 107.11 124.89 115.66 pass pass pass
- The same dataset evaluated according to the conditions of South Africa (if CVwR > 30% fixed limits 75.00 – 133.33%).
res <- ABE(theta1 = 0.75, details = TRUE,
print = FALSE, data = rds01)
tmp <- data.frame(as.list(sprintf("%.2f", res[12:17])))
names(tmp) <- names(res)[12:17]
tmp <- cbind(tmp, res[18])
print(tmp, row.names = FALSE)
# CVwR(%) BE.lo(%) BE.hi(%) CL.lo(%) CL.hi(%) PE(%) BE
# 46.96 75.00 133.33 107.11 124.89 115.66 pass
- Evaluation of the internal reference dataset 05.10 Tighter limits for the NTID phenytoin.
res <- ABE(theta1 = 0.90, details = TRUE,
print = FALSE, data = rds05)
cols <- c(13:17)
tmp <- data.frame(as.list(sprintf("%.2f", res[cols])))
names(tmp) <- names(res)[cols]
tmp <- cbind(tmp, res[18])
print(tmp, row.names = FALSE)
# BE.lo(%) BE.hi(%) CL.lo(%) CL.hi(%) PE(%) BE
# 90.00 111.11 103.82 112.04 107.85 fail
The package requires R ≥3.5.0. However, for the Kenward-Roger
approximation method.B(..., option = 3)
R ≥3.6.0 is required.
- Install the released version from CRAN:
install.packages("replicateBE", repos = "https://cloud.r-project.org/")
-
To use the development version, please install the released version from CRAN first to get its dependencies right (readxl ≥1.0.0, PowerTOST ≥1.5.3, lmerTest, nlme, pbkrtest).
You need tools for building R packages from sources on your machine. For Windows users:
- Download Rtools from CRAN and follow the suggestions of the installer.
- Install
devtools
and build the development version by:
install.packages("devtools", repos = "https://cloud.r-project.org/")
devtools::install_github("Helmut01/replicateBE")
Inspect this information for reproducibility. Of particular importance are the versions of R and the packages used to create this workflow. It is considered good practice to record this information with every analysis.
options(width = 66)
print(sessionInfo(), locale = FALSE)
# R version 4.2.0 (2022-04-22 ucrt)
# Platform: x86_64-w64-mingw32/x64 (64-bit)
# Running under: Windows 10 x64 (build 22000)
#
# Matrix products: default
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods
# [7] base
#
# other attached packages:
# [1] replicateBE_1.1.3.9000
#
# loaded via a namespace (and not attached):
# [1] tidyselect_1.1.2 xfun_0.30 purrr_0.3.4
# [4] splines_4.2.0 lmerTest_3.1-3 lattice_0.20-45
# [7] colorspace_2.0-3 vctrs_0.4.1 generics_0.1.2
# [10] htmltools_0.5.2 yaml_2.3.5 utf8_1.2.2
# [13] rlang_1.0.2 pillar_1.7.0 nloptr_2.0.0
# [16] glue_1.6.2 PowerTOST_1.5-4 readxl_1.4.0
# [19] lifecycle_1.0.1 stringr_1.4.0 munsell_0.5.0
# [22] gtable_0.3.0 cellranger_1.1.0 mvtnorm_1.1-3
# [25] evaluate_0.15 knitr_1.39 fastmap_1.1.0
# [28] parallel_4.2.0 pbkrtest_0.5.1 fansi_1.0.3
# [31] highr_0.9 broom_0.8.0 Rcpp_1.0.8.3
# [34] backports_1.4.1 scales_1.2.0 lme4_1.1-29
# [37] TeachingDemos_2.12 ggplot2_3.3.5 digest_0.6.29
# [40] stringi_1.7.6 dplyr_1.0.8 numDeriv_2016.8-1.1
# [43] grid_4.2.0 cli_3.3.0 tools_4.2.0
# [46] magrittr_2.0.3 tibble_3.1.6 tidyr_1.2.0
# [49] crayon_1.5.1 pkgconfig_2.0.3 MASS_7.3-57
# [52] ellipsis_0.3.2 Matrix_1.4-1 minqa_1.2.4
# [55] rmarkdown_2.14 rstudioapi_0.13 cubature_2.0.4.4
# [58] R6_2.5.1 boot_1.3-28 nlme_3.1-157
# [61] compiler_4.2.0
Helmut Schütz (author) ORCID
iD
Michael
Tomashevskiy (contributor)
Detlew Labes (contributor) ORCID
iD
Package offered for Use without any Guarantees and Absolutely No Warranty. No Liability is accepted for any Loss and Risk to Public Health Resulting from Use of this R-Code.
1.
EMA. EMA/582648/2016.
Annex I. London. 21 September 2016.
Online
↩
2.
EMA,
CHMP.
CPMP/EWP/QWP/1401/98 Rev. 1/ Corr **. London. 20 January 2010.
Online.
↩
3.
EGA.
Revised EMA Bioequivalence Guideline. Questions & Answers. London.
June 2010.
Online
↩
4. Health Canada. Guidance
Document. Conduct and Analysis of Comparative Bioavailability Studies.
Ottawa. 2018/06/08.
Online.
↩
5. Executive Board of the
Health Ministers’ Council for
GCC States. The GCC
Guidelines for Bioequivalence. Version 3.0. May 2021.
Online.
↩
6.
WHO. Application of
reference-scaled criteria for AUC in bioequivalence studies conducted
for submission to
PQT/MED.
Geneva. 02 July 2021.
Online.
↩
7.
MCC. Registration of
Medicines. Biostudies. Pretoria. June 2015.
Online.
↩
8. Schütz H, Tomashevskiy M,
Labes D, Shitova A, González-de la Parra M, Fuglsang A. Reference
Datasets for Studies in a Replicate Design Intended for Average
Bioequivalence with Expanding Limits. AAPS J. 2020; 22(2): Article 44.
doi:10.1208/s12248-020-0427-6.
↩
9.
EMA. EMA/582648/2016.
Annex II. London. 21 September 2016.
Online.
↩
10. Shumaker RC, Metzler CM.
The Phenytoin Trial is a Case Study of ‘Individual’ Bioequivalence.
Drug Inf J. 1998; 32(4): 1063–72.
doi:10.1177/009286159803200426.
↩