Skip to content

[AAAI 2024] FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal Heterogeneous Federated Learning

License

Notifications You must be signed in to change notification settings

HaokunChen245/FedDAT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FedDAT (Federated Dual-Adapter Teacher)

An approach for foundation model finetuning in multi-modal heterogeneous federated learning. [Pre-print]

Problem Setup

We propose Dual-Adapter Teacher (DAT) module and apply Mutual Knowledge Distillation (MKD) to mitigate the client local data heterogeneity in different modality.

Method


Setup

  1. Create Conda environment with Python 3.8
conda create -n feddat python=3.8
conda activate feddat
  1. Install requirements
git clone https://github.com/HaokunChen245/FedDAT.git
pip install -r requirements.txt
pip install -U adapters
pip install accelerate
  1. Prepare datasets and pretrained-models
Dataset Link
AQUA https://github.com/noagarcia/ArtVQA/tree/master/AQUA
COCO-QA http://www.cs.toronto.edu/~mren/imageqa/data/cocoqa/cocoqa-2015-05-17.zip
Images for COCO-QA https://cocodataset.org/#download
Abstract Scenes https://visualqa.org/download.html
VizWiz https://vizwiz.org/tasks-and-datasets/vqa/
GQA https://cs.stanford.edu/people/dorarad/gqa/download.html
VG_100K https://huggingface.co/datasets/visual_genome
Function & Scene (CLOVE benchmark) TODO

Put the datasets in the folder /data

Model Link
ALBEF https://storage.googleapis.com/sfr-pcl-data-research/ALBEF/ALBEF.pth
ViLT https://huggingface.co/dandelin/vilt-b32-mlm
BERT https://huggingface.co/bert-base-uncased/tree/main

Put the models in the folder /models


Run

# Training with ViLT
bash src/train_vilt.sh

# Training with ALBEF
bash src/train_albef.sh

Citation

@article{chen2023feddat,
  title={FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal Heterogeneous Federated Learning},
  author={Chen, Haokun and Zhang, Yao and Krompass, Denis and Gu, Jindong and Tresp, Volker},
  journal={arXiv preprint arXiv:2308.12305},
  year={2023}
}

About

[AAAI 2024] FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal Heterogeneous Federated Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published