Skip to content

HabilAmardias/CPE-and-Convolutional-Stem-for-Vision-Transformer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 

Repository files navigation

Combining Conditional Positional Encoding that introduces translation-equivariant bias while still keeping absolute position information[1] and Convolutional stem for vision transformer to give more stability when doing training[2]. The data used in this experiment are chest x-ray images taken from the chest x-ray database[3]. The model was trained using AdamW and using a batch size of 50.

  1. Chu, X., Tian, Z., Zhang, B., Wang, X., Wei, X., Xia, H., & Shen, C. (2021). Conditional positional encodings for vision transformers. arXiv preprint arXiv:2102.10882.
  2. Xiao, T., Singh, M., Mintun, E., Darrell, T., Dollár, P., & Girshick, R. (2021). Early convolutions help transformers see better. Advances in neural information processing systems, 34, 30392-30400.
  3. Tawsifur Rahman, Amith Khandakar, Muhammad A. Kadir, Khandaker R. Islam, Khandaker F. Islam, Zaid B. Mahbub, Mohamed Arselene Ayari, Muhammad E. H. Chowdhury. (2020) "Reliable Tuberculosis Detection using Chest X-ray with Deep Learning, Segmentation and Visualization". IEEE Access, Vol. 8, pp 191586 - 191601. DOI. 10.1109/ACCESS.2020.3031384.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published