Skip to content

Commit

Permalink
Add Python examples (#4546)
Browse files Browse the repository at this point in the history
These examples are referred to from the replacement page of https://portal.hdfgroup.org/display/HDF5/Other+Examples.
  • Loading branch information
bmribler authored Jun 8, 2024
1 parent c18f1fb commit 7f83faf
Show file tree
Hide file tree
Showing 16 changed files with 534 additions and 1 deletion.
33 changes: 33 additions & 0 deletions HDF5Examples/PYTHON/h5_compound.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
#
# This example creates an HDF5 file compound.h5 and an empty datasets /DSC in it.
#
import h5py
import numpy as np
#
# Create a new file using default properties.
#
file = h5py.File('compound.h5','w')
#
# Create a dataset under the Root group.
#
comp_type = np.dtype([('Orbit', 'i'), ('Location', np.str_, 6), ('Temperature (F)', 'f8'), ('Pressure (inHg)', 'f8')])
dataset = file.create_dataset("DSC",(4,), comp_type)
data = np.array([(1153, "Sun ", 53.23, 24.57), (1184, "Moon ", 55.12, 22.95), (1027, "Venus ", 103.55, 31.23), (1313, "Mars ", 1252.89, 84.11)], dtype = comp_type)
dataset[...] = data
#
# Close the file before exiting
#
file.close()
file = h5py.File('compound.h5', 'r')
dataset = file["DSC"]
print("Reading Orbit and Location fields...")
orbit = dataset['Orbit']
print("Orbit: ", orbit)
location = dataset['Location']
print("Location: ", location)
data = dataset[...]
print("Reading all records:")
print(data)
print("Second element of the third record:", dataset[2, 'Location'])
file.close()

22 changes: 22 additions & 0 deletions HDF5Examples/PYTHON/h5_crtdat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
#
# This examaple creates an HDF5 file dset.h5 and an empty datasets /dset in it.
#
import h5py
#
# Create a new file using default properties.
#
file = h5py.File('dset.h5','w')
#
# Create a dataset under the Root group.
#
dataset = file.create_dataset("dset",(4, 6), h5py.h5t.STD_I32BE)
print("Dataset dataspace is", dataset.shape)
print("Dataset Numpy datatype is", dataset.dtype)
print("Dataset name is", dataset.name)
print("Dataset is a member of the group", dataset.parent)
print("Dataset was created in the file", dataset.file)
#
# Close the file before exiting
#
file.close()

37 changes: 37 additions & 0 deletions HDF5Examples/PYTHON/h5_gzip.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
#
# This example creates and writes GZIP compressed dataset.
#
import h5py
import numpy as np
#
# Create gzip.h5 file.
#
file = h5py.File('gzip.h5','w')
#
# Create /DS1 dataset; in order to use compression, dataset has to be chunked.
#
dataset = file.create_dataset('DS1',(32,64),'i',chunks=(4,8),compression='gzip',compression_opts=9)
#
# Initialize data.
#
data = np.zeros((32,64))
for i in range(32):
for j in range(64):
data[i][j]= i*j-j
#
# Write data.
#
print("Writing data...")
dataset[...] = data
file.close()
#
# Read data back; display compression properties and dataset max value.
#
file = h5py.File('gzip.h5','r')
dataset = file['DS1']
print("Compression method is", dataset.compression)
print("Compression parameter is", dataset.compression_opts)
data = dataset[...]
print("Maximum value in", dataset.name, "is:", max(data.ravel()))
file.close()

54 changes: 54 additions & 0 deletions HDF5Examples/PYTHON/h5_hype.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
#
# This example shows how to write a hyperslab to an existing dataset.
#
import h5py
import numpy as np
#
# Create a file using default properties.
#
file = h5py.File('hype.h5','w')
#
# Create "IntArray" dataset.
#
dim0 = 8
dim1 = 10
dataset = file.create_dataset("IntArray", (dim0,dim1), "i")
#
# Initialize data object with 0.
#
data = np.zeros((dim0, dim1))
#
# Initialize data for writing.
#
for i in range(dim0):
for j in range(dim1):
if j < dim1/2:
data[i][j]= 1
else:
data[i][j] = 2
#
# Write data
#
dataset[...] = data
print("Data written to file:")
print(dataset[...])
#
# Close the file before exiting
#
file.close()
#
# Open the file and dataset.
#
file = h5py.File('hype.h5','r+')
dataset = file['IntArray']
#
# Write a selection.
#
dataset[1:4, 2:6] = 5
print("Data after selection is written:")
print(dataset[...])
#
# Close the file before exiting
#
file.close()

31 changes: 31 additions & 0 deletions HDF5Examples/PYTHON/h5_hypeb.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
#
# This example shows how to read a hyperslab from an existing dataset.
#
import h5py
import numpy as np
#
# Open file and read dataset.
#
file = h5py.File('hype.h5', 'r')
dataset = file['IntArray']
data_in_file = dataset[...]
print("Data in file ...")
print(data_in_file[...])
#
# Initialize data with 0s.
#
data_selected = np.zeros((8,10), dtype=np.int32)
#
# Read selection.
#
space_id = dataset.id.get_space()
space_id.select_hyperslab((1,1), (2,2), stride=(4,4), block=(2,2))
#---> Doesn't work dataset.id.read(space_id, space_id, data_selected, h5py.h5t.STD_I32LE)
dataset.id.read(space_id, space_id, data_selected)
print("Selected data read from file....")
print(data_selected[...])
#
# Close the file before exiting
#
file.close()

71 changes: 71 additions & 0 deletions HDF5Examples/PYTHON/h5_links.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
#
# This example demonstrates the concepts of hard, soft and external links.
#
# We will create file links.h5 with the following members and then will try to access objects
# using hard, soft and external links.
# / Group
# /A Group
# /A/a Dataset {10}
# /B Group
# /B/External External Link {dset.h5//dset}
# /a Dataset, same as /A/a
# /dangling Soft Link {/B/XXX}
# /soft Soft Link {/A/a}

import h5py
import numpy as np
file = h5py.File('links.h5', 'w')
#
# Create a group structure in the file
#
A = file.create_group("A")
B = file.create_group("B")
a = A.create_dataset("a", (10,), 'i')
#
# Create a hard link in a root group pointing to dataset /A/a
#
file["a"] = a
#
# Create a soft link (alias) in a root group with a value /A/a
#
file["soft"] = h5py.SoftLink('/A/a')
#
# Create a soft link (alias) in a root group with a value /B/XXX that cannot be resolved
#
file["dangling"] = h5py.SoftLink('/B/XXX')
#
# Create an external link to a dataset "dset" in file dset.h5
#
B['External'] = h5py.ExternalLink("dset.h5", "/dset")
#
# List objects in the root group in the file
#
print("Root group members in links.h5:")
try:
print("Trying to get the items...")
print(list(file.items()))
except:
print("...but can only get the keys...")
print(list(file.keys()))
print(" ")
print("Why? Because the library cannot resolve the dangling link.")
print("We will delete the 'dangling' link and try again.")
del file["dangling"]
print(list(file.items()))
print(" ")
print("Group A members:")
print(list(A.items()))
print(" ")
print("Group B members:")
print(list(B.items()))
print(" ")
print("Reading dataset pointed by the external link...")
dset = B['External']
data = np.zeros((4,6))
data = dset[...]
print(data)
#
# Copy link to /A/a to /B/b
#
B["b"]=A["a"]
file.close()
37 changes: 37 additions & 0 deletions HDF5Examples/PYTHON/h5_objref.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
#
# This example shows how to create dataset with object references
#
import h5py
import numpy as np
#
# Create a new file using default properties.
#
file = h5py.File('objref.h5','w')
#
# Create a group and scalar datasets under the Root group.
#
group = file.create_group("G1")
dataset = file.create_dataset("DS2",(), 'i')
#
# Create references to the group and the dataset and store them in another dataset.
#
refs = (group.ref, dataset.ref)
ref_type = h5py.h5t.special_dtype(ref=h5py.Reference)
dataset_ref = file.create_dataset("DS1", (2,),ref_type)
dataset_ref[...] = refs

#
# Close the file before exiting
#
file.close()

file = h5py.File('objref.h5','r')
dataset_ref = file["DS1"]
refs = dataset_ref[...]
refs_list = list(refs)
for obj in refs_list:
index = refs_list.index(obj)
print("DS["+str(index)+"]:")
print(file[obj])
file.close()

31 changes: 31 additions & 0 deletions HDF5Examples/PYTHON/h5_readtofloat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
#
# This example reads integer data from dset.h5 file into Python floatng buffers.
#
import h5py
import numpy as np
#
# Open an existing file using default properties.
#
file = h5py.File('dset.h5','r+')
#
# Open "dset" dataset under the root group.
#
dataset = file['/dset']
#
# Initialize buffers,read and print data.
#
# Python float type is 64-bit, one needs to use NATIVE_DOUBLE HDF5 type to read data.
data_read64 = np.zeros((4,6,), dtype=float)
dataset.id.read(h5py.h5s.ALL, h5py.h5s.ALL, data_read64, mtype=h5py.h5t.NATIVE_DOUBLE)
print("Printing data 64-bit floating numbers...")
print(data_read64)

data_read32 = np.zeros((4,6,), dtype=np.float32)
dataset.id.read(h5py.h5s.ALL, h5py.h5s.ALL, data_read32, mtype=h5py.h5t.NATIVE_FLOAT)
print("Printing data 32-bit floating numbers...")
print(data_read32)
#
# Close the file before exiting
#
file.close()

52 changes: 52 additions & 0 deletions HDF5Examples/PYTHON/h5_regref.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
#
# This example shows how to create a dataset with region references.
#
import h5py
import numpy as np
#
# Create a new file using default properties.
#
file = h5py.File('regref.h5','w')
#
# Create a group and (3x2) dataset under the Root group.
#
dataset = file.create_dataset("DS2",(3,2), h5py.h5t.STD_I8LE)
dataset[...] = np.array([[1,1], [2,2], [3,3]])
#
# Create references to each row in the dataset.
#
refs = (dataset.regionref[0,:],dataset.regionref[1,:],dataset.regionref[2,:])
#
# Create a dataset to store region references.
#
ref_type = h5py.h5t.special_dtype(ref=h5py.RegionReference)
dataset_ref = file.create_dataset("DS1", (3,),ref_type)
dataset_ref[...] = refs
#
# Close the file before exiting.
#
file.close()
#
# Open the file, read the second element of the dataset with the region references
# and dereference it to get data.
#
file = h5py.File('regref.h5', 'r')
dataset = file["DS1"]
regref = dataset[1]
#
# Region reference can be used to find a dataset it points to.
#
dataset_name = file[regref].name
print(dataset_name)
#
# Get hyperslab the reference points to.
#
data = file[dataset_name]
#
# Region reference can be used as a slicing argument!
print(data[regref])
file.close()




Loading

0 comments on commit 7f83faf

Please sign in to comment.