Kaihao Zhang, Dongxu Li, Wenhan Luo, Wenqi Ren, Wei Liu
To replicate the environment:
cd code
conda install --file requirements.txt
Please first modify bash files accordingly with your data folder path.
cd code/run_scripts
(1) Train on NTU dataset: Put data under /$YOUR_ROOTPATH/derain/NTU-derain
cd code/run_scripts/
bash train_resnet18_5pic.sh
(2) Train on RainSys25 light dataset: Put data under /$YOUR_ROOTPATH/derain/RainSyn25
cd code/run_scripts/
bash train_resnet18_rainsys_light_5pic.sh
(3) Train on RainSys25 heavy dataset: Put data under /$YOUR_ROOTPATH/derain/RainSyn25
cd code/run_scripts/
bash train_resnet18_rainsys_heavy_5pic.sh
Please first modify bash files accordingly with your data folder path.
Download checkpoints and put in code/best_checkpoints
(https://drive.google.com/drive/folders/19PSF-slyB_m_0dWWo-VRe_uvGOlDiCPf?usp=sharing)
(1) Test on NTU dataset:
cd code/run_scripts/
bash test_ntu_npic.sh
(2) Test on RainSys25 light dataset:
cd code/run_scripts/
bash test_light_npic.sh
(3) Test on RainSys25 heavy dataset:
cd code/run_scripts/
bash test_heavy_npic.sh
@article{zhang2022enhanced,
title={Enhanced Spatio-Temporal Interaction Learning for Video Deraining: A Faster and Better Framework},
author={Zhang, Kaihao and Li, Dongxu and Luo, Wenhan and Ren, Wenqi and Liu, Wei},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
year={2022}
}