Convert offline handwritten mathematical expression to LaTeX sequence using bidirectionally trained transformer.
First, install dependencies
# clone project
git clone https://github.com/Green-Wood/BTTR
# install project
cd BTTR
conda create -y -n bttr python=3.7
conda activate bttr
conda install --yes -c pytorch pytorch=1.7.0 torchvision cudatoolkit=<your-cuda-version>
pip install -e .
Next, navigate to any file and run it. It may take 6~7 hours to converge on 4 gpus using ddp.
# module folder
cd BTTR
# train bttr model using 4 gpus and ddp
python train.py --config config.yaml
For single gpu user, you may change the config.yaml
file to
gpus: 1
# gpus: 4
# accelerator: ddp
This project is setup as a package which means you can now easily import any file into any other file like so:
from bttr.datamodule import CROHMEDatamodule
from bttr import LitBTTR
from pytorch_lightning import Trainer
# model
model = LitBTTR()
# data
dm = CROHMEDatamodule(test_year=test_year)
# train
trainer = Trainer()
trainer.fit(model, datamodule=dm)
# test using the best model!
trainer.test(datamodule=dm)
Metrics used in validation is not accurate.
For more accurate metrics:
- use
test.py
to generate result.zip - download and install crohmelib, lgeval, and tex2symlg tool.
- convert tex file to symLg file using
tex2symlg
command - evaluate two folder using
evaluate
command
@article{zhao2021handwritten,
title={Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer},
author={Zhao, Wenqi and Gao, Liangcai and Yan, Zuoyu and Peng, Shuai and Du, Lin and Zhang, Ziyin},
journal={arXiv preprint arXiv:2105.02412},
year={2021}
}
@inproceedings{Zhao2021HandwrittenME,
title={Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer},
author={Wenqi Zhao and Liangcai Gao and Zuoyu Yan and Shuai Peng and Lin Du and Ziyin Zhang},
booktitle={ICDAR},
year={2021}
}