-
Notifications
You must be signed in to change notification settings - Fork 121
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Feature/spectra correlations #306
Changes from 8 commits
12359ad
742df12
6e0a6bc
b36ea3d
93e88c8
e7e8252
322f794
56ea104
594e1d0
91b10d4
f872b12
2b52486
8128efa
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -89,6 +89,28 @@ void write_to_file(std::string filename, std::vector<PointType> const& randPoint | |
std::cout.rdbuf(coutbuf); | ||
} | ||
|
||
bool is_correlation_matrix(const MT& matrix, const double tol = 1e-8){ | ||
//check if all the diagonal elements are ones | ||
for(int i=0 ; i<matrix.rows() ; i++) | ||
{ | ||
if(std::abs(matrix(i, i)-1.0) > tol) | ||
{ | ||
return false; | ||
} | ||
} | ||
|
||
//check if the matrix is positive definite | ||
Eigen::SelfAdjointEigenSolver<MT> eigen_solver(matrix); | ||
|
||
if(eigen_solver.info() != Eigen::Success) | ||
{ | ||
return false; | ||
} | ||
|
||
//the matrix is positive definite if all eigenvalues are positive | ||
return eigen_solver.eigenvalues().minCoeff() > -tol; | ||
} | ||
|
||
template<typename WalkType> | ||
void correlation_matrix_uniform_sampling(const unsigned int n, const unsigned int num_points, std::string walkname){ | ||
|
||
|
@@ -106,7 +128,7 @@ void correlation_matrix_uniform_sampling(const unsigned int n, const unsigned in | |
time = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count(); | ||
std::cout << "Elapsed time : " << time << " (ms)" << std::endl; | ||
|
||
write_to_file<Point>(walkname + "_matrices.txt", randPoints); | ||
write_to_file<Point>(walkname + "_matrices" + std::to_string(n) + ".txt", randPoints); | ||
} | ||
|
||
template<typename WalkType> | ||
|
@@ -126,7 +148,15 @@ void correlation_matrix_uniform_sampling_MT(const unsigned int n, const unsigned | |
time = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count(); | ||
std::cout << "Elapsed time : " << time << " (ms)" << std::endl; | ||
|
||
write_to_file<PointMT>(walkname + "_matrices_MT.txt", randPoints); | ||
int valid_points = 0; | ||
for(const auto& points : randPoints){ | ||
if(is_correlation_matrix(points.mat)){ | ||
valid_points++; | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Please fix indentation here There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. done |
||
} | ||
} | ||
std::cout << "Number of valid points = " << valid_points << std::endl; | ||
|
||
write_to_file<PointMT>(walkname + "_matrices_MT" + std::to_string(n) + ".txt", randPoints); | ||
} | ||
|
||
int main(int argc, char const *argv[]){ | ||
|
@@ -146,25 +176,30 @@ int main(int argc, char const *argv[]){ | |
printf("\n"); | ||
#endif | ||
|
||
unsigned int n = 3, num_points = 5000; | ||
unsigned int num_points = 5000; | ||
|
||
std::vector<unsigned int> dimensions = {3, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}; | ||
|
||
old_uniform_sampling<BilliardWalk>(n, num_points); | ||
for(unsigned int n : dimensions){ | ||
|
||
correlation_matrix_uniform_sampling<BallWalk>(n, num_points, "BallWalk"); | ||
old_uniform_sampling<BilliardWalk>(n, num_points); | ||
|
||
correlation_matrix_uniform_sampling<RDHRWalk>(n, num_points, "RDHRWalk"); | ||
correlation_matrix_uniform_sampling<BallWalk>(n, num_points, "BallWalk"); | ||
|
||
correlation_matrix_uniform_sampling<BilliardWalk>(n, num_points, "BilliardWalk"); | ||
correlation_matrix_uniform_sampling<RDHRWalk>(n, num_points, "RDHRWalk"); | ||
|
||
correlation_matrix_uniform_sampling<AcceleratedBilliardWalk>(n, num_points, "AcceleratedBilliardWalk"); | ||
correlation_matrix_uniform_sampling<BilliardWalk>(n, num_points, "BilliardWalk"); | ||
|
||
correlation_matrix_uniform_sampling_MT<BallWalk>(n, num_points, "BallWalk"); | ||
correlation_matrix_uniform_sampling<AcceleratedBilliardWalk>(n, num_points, "AcceleratedBilliardWalk"); | ||
|
||
correlation_matrix_uniform_sampling_MT<RDHRWalk>(n, num_points, "RDHRWalk"); | ||
correlation_matrix_uniform_sampling_MT<BallWalk>(n, num_points, "BallWalk"); | ||
|
||
correlation_matrix_uniform_sampling_MT<BilliardWalk>(n, num_points, "BilliardWalk"); | ||
correlation_matrix_uniform_sampling_MT<RDHRWalk>(n, num_points, "RDHRWalk"); | ||
|
||
correlation_matrix_uniform_sampling_MT<AcceleratedBilliardWalk>(n, num_points, "AcceleratedBilliardWalk"); | ||
correlation_matrix_uniform_sampling_MT<BilliardWalk>(n, num_points, "BilliardWalk"); | ||
|
||
correlation_matrix_uniform_sampling_MT<AcceleratedBilliardWalk>(n, num_points, "AcceleratedBilliardWalk"); | ||
} | ||
|
||
return 0; | ||
} | ||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -168,8 +168,9 @@ class EigenvaluesProblems<NT, Eigen::Matrix<NT,Eigen::Dynamic,Eigen::Dynamic>, E | |
Spectra::DenseCholesky<NT> Bop(-A); | ||
|
||
// Construct generalized eigen solver object, requesting the largest three generalized eigenvalues | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. "... computing the minimum positive eigenvalue by computing the largest eigenvalue of the inverse Generalized Eigenvalue Problem." There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. i updated the comment. |
||
int ncv = std::min(std::max(10, matrixDim/20), matrixDim); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Could you please comment on where those numbers come from? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This is an empirical value I gave to @atrayees. We left as a task after the R interface to tune this implementation (not only ncv value). There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Thanks @TolisChal for the explanations. @atrayees could you please add a comment with this explanation and mention that as a TODO? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. yes, done |
||
Spectra::SymGEigsSolver<NT, Spectra::LARGEST_ALGE, Spectra::DenseSymMatProd<NT>, Spectra::DenseCholesky<NT>, Spectra::GEIGS_CHOLESKY> | ||
geigs(&op, &Bop, 1, 15 < matrixDim ? 15 : matrixDim); | ||
geigs(&op, &Bop, 1, ncv); | ||
|
||
// Initialize and compute | ||
geigs.init(); | ||
|
@@ -324,9 +325,10 @@ class EigenvaluesProblems<NT, Eigen::Matrix<NT,Eigen::Dynamic,Eigen::Dynamic>, E | |
Spectra::DenseSymMatProd<NT> op(B); | ||
Spectra::DenseCholesky<NT> Bop(-A); | ||
|
||
// Construct generalized eigen solver object, requesting the largest three generalized eigenvalues | ||
// Construct generalized eigen solver object, requesting the largest generalized eigenvalue | ||
int ncv = std::min(std::max(10, matrixDim/20), matrixDim); | ||
Spectra::SymGEigsSolver<NT, Spectra::LARGEST_ALGE, Spectra::DenseSymMatProd<NT>, Spectra::DenseCholesky<NT>, Spectra::GEIGS_CHOLESKY> | ||
geigs(&op, &Bop, 1, 15 < matrixDim ? 15 : matrixDim); | ||
geigs(&op, &Bop, 1, ncv); | ||
|
||
// Initialize and compute | ||
geigs.init(); | ||
|
@@ -439,10 +441,39 @@ class EigenvaluesProblems<NT, Eigen::Matrix<NT,Eigen::Dynamic,Eigen::Dynamic>, E | |
/// \param[in] B: symmetric matrix | ||
/// \return The minimum positive eigenvalue and the corresponding eigenvector | ||
NT minPosLinearEigenvalue_EigenSymSolver(MT const & A, MT const & B, VT &eigvec) const { | ||
|
||
#if defined(SPECTRA_EIGENVALUES_SOLVER) | ||
int matrixDim = A.rows(); | ||
NT lambdaMinPositive; | ||
|
||
Spectra::DenseSymMatProd<NT> op(B); | ||
Spectra::DenseCholesky<NT> Bop(A); | ||
|
||
//construct generalized eigen solver object, requesting the smallest eigenvalue | ||
int ncv = std::min(std::max(10, matrixDim/20), matrixDim); | ||
Spectra::SymGEigsSolver<NT, Spectra::LARGEST_ALGE, Spectra::DenseSymMatProd<NT>, Spectra::DenseCholesky<NT>, Spectra::GEIGS_CHOLESKY> | ||
geigs(&op, &Bop, 1, ncv); | ||
|
||
//initialize and compute | ||
geigs.init(); | ||
int nconv = geigs.compute(); | ||
|
||
//retrieve results | ||
VT evalues; | ||
|
||
if(geigs.info() == Spectra::SUCCESSFUL){ | ||
evalues = geigs.eigenvalues(); | ||
eigvec = geigs.eigenvectors().col(0); | ||
} | ||
|
||
lambdaMinPositive = NT(1)/evalues(0); | ||
|
||
#elif | ||
NT lambdaMinPositive = NT(0); | ||
Eigen::GeneralizedSelfAdjointEigenSolver<MT> ges(B,A); | ||
lambdaMinPositive = 1/ges.eigenvalues().reverse()[0]; | ||
eigvec = ges.eigenvectors().reverse().col(0).reverse(); | ||
#endif | ||
return lambdaMinPositive; | ||
} | ||
}; | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please fix indentation here
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
done