Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rework plotting in nD #141

Merged
merged 6 commits into from
Mar 16, 2021
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -188,7 +188,7 @@ bin_center, gamma = gs.vario_estimate((x, y), field)
fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
# output
ax = fit_model.plot(x_max=bin_center[-1])
ax = fit_model.plot(x_max=max(bin_center))
ax.scatter(bin_center, gamma)
print(fit_model)
```
Expand Down
2 changes: 1 addition & 1 deletion docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,7 @@ model again.
fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
# output
ax = fit_model.plot(x_max=bin_center[-1])
ax = fit_model.plot(x_max=max(bin_center))
ax.scatter(bin_center, gamma)
print(fit_model)

Expand Down
12 changes: 9 additions & 3 deletions examples/01_random_field/07_higher_dimensions.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,9 +53,8 @@
# In order to "prove" correctness, we can calculate an empirical variogram
# of the generated field and fit our model to it.

bin_edges = range(size)
bin_center, vario = gs.vario_estimate(
pos, field, bin_edges, sampling_size=2000, mesh_type="structured"
pos, field, sampling_size=2000, mesh_type="structured"
)
model.fit_variogram(bin_center, vario)
print(model)
Expand All @@ -67,9 +66,16 @@
# Let's have a look at the fit and a x-y cross-section of the 4D field:

f, a = plt.subplots(1, 2, gridspec_kw={"width_ratios": [2, 1]}, figsize=[9, 3])
model.plot(x_max=size + 1, ax=a[0])
model.plot(x_max=max(bin_center), ax=a[0])
a[0].scatter(bin_center, vario)
a[1].imshow(field[:, :, 0, 0].T, origin="lower")
a[0].set_title("isotropic empirical variogram with fitted model")
a[1].set_title("x-y cross-section")
f.show()

###############################################################################
# GSTools also provides plotting routines for higher dimensions.
# Fields are shown by 2D cross-sections, where other dimensions can be
# controlled via sliders.

srf.plot()
1 change: 1 addition & 0 deletions examples/02_cov_model/02_aniso_rotation.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,3 +52,4 @@
# - in 3D: given by yaw, pitch, and roll (known as
# `Tait–Bryan <https://en.wikipedia.org/wiki/Euler_angles#Tait-Bryan_angles>`_
# angles)
# - in nD: See the random field example about higher dimensions
6 changes: 2 additions & 4 deletions examples/03_variogram/03_directional_2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@

angle = np.pi / 8
model = gs.Exponential(dim=2, len_scale=[10, 5], angles=angle)
x = y = range(100)
x = y = range(101)
srf = gs.SRF(model, seed=123456)
field = srf((x, y), mesh_type="structured")

Expand Down Expand Up @@ -56,9 +56,7 @@
model.plot("vario_axis", axis=1, ax=ax1, x_max=40, label="fit on axis 1")
ax1.set_title("Fitting an anisotropic model")

srf.plot(ax=ax2)
ax2.set_aspect("equal")

srf.plot(ax=ax2, show_colorbar=False)
plt.show()

###############################################################################
Expand Down
78 changes: 38 additions & 40 deletions examples/03_variogram/04_directional_3d.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,11 +17,12 @@

dim = 3
# rotation around z, y, x
angles = [np.pi / 2, np.pi / 4, np.pi / 8]
angles = [np.deg2rad(90), np.deg2rad(45), np.deg2rad(22.5)]
model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=angles)
x = y = z = range(50)
pos = (x, y, z)
srf = gs.SRF(model, seed=1001)
field = srf.structured((x, y, z))
field = srf.structured(pos)

###############################################################################
# Here we generate the axes of the rotated coordinate system
Expand All @@ -37,9 +38,9 @@
# with the longest correlation length (flattest gradient).
# Then check the transversal directions and so on.

bins = range(0, 40, 3)
bin_center, dir_vario, counts = gs.vario_estimate(
*([x, y, z], field, bins),
pos,
field,
direction=main_axes,
bandwidth=10,
sampling_size=2000,
Expand All @@ -51,48 +52,45 @@
###############################################################################
# Afterwards we can use the estimated variogram to fit a model to it.
# Note, that the rotation angles need to be set beforehand.
#
# We can use the `counts` of data pairs per bin as weights for the fitting
# routines to give more attention to areas where more data was available.
# In order to not introduce to much offset at the origin, we disable
# fitting the nugget.

print("Original:")
print(model)
model.fit_variogram(bin_center, dir_vario, weights=counts, nugget=False)
model.fit_variogram(bin_center, dir_vario)
print("Fitted:")
print(model)

###############################################################################
# Plotting.

fig = plt.figure(figsize=[15, 5])
ax1 = fig.add_subplot(131)
ax2 = fig.add_subplot(132, projection=Axes3D.name)
ax3 = fig.add_subplot(133)

srf.plot(ax=ax1)
ax1.set_aspect("equal")

ax2.plot([0, axis1[0]], [0, axis1[1]], [0, axis1[2]], label="0.")
ax2.plot([0, axis2[0]], [0, axis2[1]], [0, axis2[2]], label="1.")
ax2.plot([0, axis3[0]], [0, axis3[1]], [0, axis3[2]], label="2.")
ax2.set_xlim(-1, 1)
ax2.set_ylim(-1, 1)
ax2.set_zlim(-1, 1)
ax2.set_xlabel("X")
ax2.set_ylabel("Y")
ax2.set_zlabel("Z")
ax2.set_title("Tait-Bryan main axis")
ax2.legend(loc="lower left")

ax3.scatter(bin_center, dir_vario[0], label="0. axis")
ax3.scatter(bin_center, dir_vario[1], label="1. axis")
ax3.scatter(bin_center, dir_vario[2], label="2. axis")
model.plot("vario_axis", axis=0, ax=ax3, label="fit on axis 0")
model.plot("vario_axis", axis=1, ax=ax3, label="fit on axis 1")
model.plot("vario_axis", axis=2, ax=ax3, label="fit on axis 2")
ax3.set_title("Fitting an anisotropic model")
ax3.legend()
# Plotting main axes and the fitted directional variogram.

fig = plt.figure(figsize=[10, 5])
ax1 = fig.add_subplot(121, projection=Axes3D.name)
ax2 = fig.add_subplot(122)

ax1.plot([0, axis1[0]], [0, axis1[1]], [0, axis1[2]], label="0.")
ax1.plot([0, axis2[0]], [0, axis2[1]], [0, axis2[2]], label="1.")
ax1.plot([0, axis3[0]], [0, axis3[1]], [0, axis3[2]], label="2.")
ax1.set_xlim(-1, 1)
ax1.set_ylim(-1, 1)
ax1.set_zlim(-1, 1)
ax1.set_xlabel("X")
ax1.set_ylabel("Y")
ax1.set_zlabel("Z")
ax1.set_title("Tait-Bryan main axis")
ax1.legend(loc="lower left")

x_max = max(bin_center)
ax2.scatter(bin_center, dir_vario[0], label="0. axis")
ax2.scatter(bin_center, dir_vario[1], label="1. axis")
ax2.scatter(bin_center, dir_vario[2], label="2. axis")
model.plot("vario_axis", axis=0, ax=ax2, x_max=x_max, label="fit on axis 0")
model.plot("vario_axis", axis=1, ax=ax2, x_max=x_max, label="fit on axis 1")
model.plot("vario_axis", axis=2, ax=ax2, x_max=x_max, label="fit on axis 2")
ax2.set_title("Fitting an anisotropic model")
ax2.legend()

plt.show()

###############################################################################
# Also, let's have a look at the field.

srf.plot()
4 changes: 2 additions & 2 deletions examples/03_variogram/05_auto_fit_variogram.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@

bin_center, gamma = gs.vario_estimate((x, y), field)
print("estimated bin number:", len(bin_center))
print("maximal bin distance:", bin_center[-1])
print("maximal bin distance:", max(bin_center))

###############################################################################
# Fit the variogram with a stable model (no nugget fitted).
Expand All @@ -31,5 +31,5 @@
###############################################################################
# Plot the fitting result.

ax = fit_model.plot(x_max=bin_center[-1])
ax = fit_model.plot(x_max=max(bin_center))
ax.scatter(bin_center, gamma)
10 changes: 7 additions & 3 deletions gstools/field/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -268,7 +268,9 @@ def vtk_export(
fieldname=fieldname,
)

def plot(self, field="field", fig=None, ax=None): # pragma: no cover
def plot(
self, field="field", fig=None, ax=None, **kwargs
): # pragma: no cover
"""
Plot the spatial random field.

Expand All @@ -283,6 +285,8 @@ def plot(self, field="field", fig=None, ax=None): # pragma: no cover
ax : :class:`Axes` or :any:`None`
Axes to plot on. If `None`, a new one will be added to the figure.
Default: `None`
**kwargs
Forwarded to the plotting routine.
"""
# just import if needed; matplotlib is not required by setup
from gstools.field.plot import plot_field, plot_vec_field
Expand All @@ -294,11 +298,11 @@ def plot(self, field="field", fig=None, ax=None): # pragma: no cover
)

elif self.value_type == "scalar":
r = plot_field(self, field, fig, ax)
r = plot_field(self, field, fig, ax, **kwargs)

elif self.value_type == "vector":
if self.model.dim == 2:
r = plot_vec_field(self, field, fig, ax)
r = plot_vec_field(self, field, fig, ax, **kwargs)
else:
raise NotImplementedError(
"Streamflow plotting only supported for 2d case."
Expand Down
Loading