-
Notifications
You must be signed in to change notification settings - Fork 224
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
291 additions
and
43 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -30,4 +30,4 @@ dependencies: | |
- sphinx-copybutton | ||
- sphinx-design | ||
- sphinx-gallery | ||
- sphinx_rtd_theme | ||
- sphinx_rtd_theme<3.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
outs: | ||
- md5: 39b241fdd879271cf1e8cf1f73454706 | ||
size: 9910 | ||
hash: md5 | ||
path: test_shift_origin.png |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,240 @@ | ||
""" | ||
Tests for the _to_numpy function in the clib.conversion module. | ||
""" | ||
|
||
import sys | ||
|
||
import numpy as np | ||
import numpy.testing as npt | ||
import pandas as pd | ||
import pytest | ||
from packaging.version import Version | ||
from pygmt.clib.conversion import _to_numpy | ||
|
||
try: | ||
import pyarrow as pa | ||
|
||
_HAS_PYARROW = True | ||
except ImportError: | ||
_HAS_PYARROW = False | ||
|
||
|
||
def _check_result(result, expected_dtype): | ||
""" | ||
A helper function to check if the result of the _to_numpy function is a C-contiguous | ||
NumPy array with the expected dtype. | ||
""" | ||
assert isinstance(result, np.ndarray) | ||
assert result.flags.c_contiguous | ||
assert result.dtype.type == expected_dtype | ||
|
||
|
||
######################################################################################## | ||
# Test the _to_numpy function with Python built-in types. | ||
######################################################################################## | ||
@pytest.mark.parametrize( | ||
("data", "expected_dtype"), | ||
[ | ||
pytest.param( | ||
[1, 2, 3], | ||
np.int32 | ||
if sys.platform == "win32" and Version(np.__version__) < Version("2.0") | ||
else np.int64, | ||
id="int", | ||
), | ||
pytest.param([1.0, 2.0, 3.0], np.float64, id="float"), | ||
pytest.param( | ||
[complex(+1), complex(-2j), complex("-Infinity+NaNj")], | ||
np.complex128, | ||
id="complex", | ||
), | ||
], | ||
) | ||
def test_to_numpy_python_types_numeric(data, expected_dtype): | ||
""" | ||
Test the _to_numpy function with Python built-in numeric types. | ||
""" | ||
result = _to_numpy(data) | ||
_check_result(result, expected_dtype) | ||
npt.assert_array_equal(result, data) | ||
|
||
|
||
######################################################################################## | ||
# Test the _to_numpy function with NumPy arrays. | ||
# | ||
# There are 24 fundamental dtypes in NumPy. Not all of them are supported by PyGMT. | ||
# | ||
# - Numeric dtypes: | ||
# - int8, int16, int32, int64, longlong | ||
# - uint8, uint16, uint32, uint64, ulonglong | ||
# - float16, float32, float64, longdouble | ||
# - complex64, complex128, clongdouble | ||
# - bool | ||
# - datetime64, timedelta64 | ||
# - str_ | ||
# - bytes_ | ||
# - object_ | ||
# - void | ||
# | ||
# Reference: https://numpy.org/doc/2.1/reference/arrays.scalars.html | ||
######################################################################################## | ||
np_dtype_params = [ | ||
pytest.param(np.int8, np.int8, id="int8"), | ||
pytest.param(np.int16, np.int16, id="int16"), | ||
pytest.param(np.int32, np.int32, id="int32"), | ||
pytest.param(np.int64, np.int64, id="int64"), | ||
pytest.param(np.longlong, np.longlong, id="longlong"), | ||
pytest.param(np.uint8, np.uint8, id="uint8"), | ||
pytest.param(np.uint16, np.uint16, id="uint16"), | ||
pytest.param(np.uint32, np.uint32, id="uint32"), | ||
pytest.param(np.uint64, np.uint64, id="uint64"), | ||
pytest.param(np.ulonglong, np.ulonglong, id="ulonglong"), | ||
pytest.param(np.float16, np.float16, id="float16"), | ||
pytest.param(np.float32, np.float32, id="float32"), | ||
pytest.param(np.float64, np.float64, id="float64"), | ||
pytest.param(np.longdouble, np.longdouble, id="longdouble"), | ||
pytest.param(np.complex64, np.complex64, id="complex64"), | ||
pytest.param(np.complex128, np.complex128, id="complex128"), | ||
pytest.param(np.clongdouble, np.clongdouble, id="clongdouble"), | ||
] | ||
|
||
|
||
@pytest.mark.parametrize(("dtype", "expected_dtype"), np_dtype_params) | ||
def test_to_numpy_ndarray_numpy_dtypes_numeric(dtype, expected_dtype): | ||
""" | ||
Test the _to_numpy function with NumPy arrays of NumPy numeric dtypes. | ||
Test both 1-D and 2-D arrays which are not C-contiguous. | ||
""" | ||
# 1-D array that is not C-contiguous | ||
array = np.array([1, 2, 3, 4, 5, 6], dtype=dtype)[::2] | ||
assert array.flags.c_contiguous is False | ||
result = _to_numpy(array) | ||
_check_result(result, expected_dtype) | ||
npt.assert_array_equal(result, array, strict=True) | ||
|
||
# 2-D array that is not C-contiguous | ||
array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype=dtype)[::2, ::2] | ||
assert array.flags.c_contiguous is False | ||
result = _to_numpy(array) | ||
_check_result(result, expected_dtype) | ||
npt.assert_array_equal(result, array, strict=True) | ||
|
||
|
||
######################################################################################## | ||
# Test the _to_numpy function with pandas.Series. | ||
# | ||
# In pandas, dtype can be specified by | ||
# | ||
# 1. NumPy dtypes (see above) | ||
# 2. pandas dtypes | ||
# 3. PyArrow types (see below) | ||
# | ||
# pandas provides following dtypes: | ||
# | ||
# - Numeric dtypes: | ||
# - Int8, Int16, Int32, Int64 | ||
# - UInt8, UInt16, UInt32, UInt64 | ||
# - Float32, Float64 | ||
# - DatetimeTZDtype | ||
# - PeriodDtype | ||
# - IntervalDtype | ||
# - StringDtype | ||
# - CategoricalDtype | ||
# - SparseDtype | ||
# - BooleanDtype | ||
# - ArrowDtype: a special dtype used to store data in the PyArrow format. | ||
# | ||
# References: | ||
# 1. https://pandas.pydata.org/docs/reference/arrays.html | ||
# 2. https://pandas.pydata.org/docs/user_guide/basics.html#basics-dtypes | ||
# 3. https://pandas.pydata.org/docs/user_guide/pyarrow.html | ||
######################################################################################## | ||
@pytest.mark.parametrize(("dtype", "expected_dtype"), np_dtype_params) | ||
def test_to_numpy_pandas_series_numpy_dtypes_numeric(dtype, expected_dtype): | ||
""" | ||
Test the _to_numpy function with pandas.Series of NumPy numeric dtypes. | ||
""" | ||
series = pd.Series([1, 2, 3, 4, 5, 6], dtype=dtype)[::2] # Not C-contiguous | ||
result = _to_numpy(series) | ||
_check_result(result, expected_dtype) | ||
npt.assert_array_equal(result, series) | ||
|
||
|
||
######################################################################################## | ||
# Test the _to_numpy function with PyArrow arrays. | ||
# | ||
# PyArrow provides the following types: | ||
# | ||
# - Numeric types: | ||
# - int8, int16, int32, int64 | ||
# - uint8, uint16, uint32, uint64 | ||
# - float16, float32, float64 | ||
# | ||
# In PyArrow, array types can be specified in two ways: | ||
# | ||
# - Using string aliases (e.g., "int8") | ||
# - Using pyarrow.DataType (e.g., ``pa.int8()``) | ||
# | ||
# Reference: https://arrow.apache.org/docs/python/api/datatypes.html | ||
######################################################################################## | ||
@pytest.mark.skipif(not _HAS_PYARROW, reason="pyarrow is not installed") | ||
@pytest.mark.parametrize( | ||
("dtype", "expected_dtype"), | ||
[ | ||
pytest.param("int8", np.int8, id="int8"), | ||
pytest.param("int16", np.int16, id="int16"), | ||
pytest.param("int32", np.int32, id="int32"), | ||
pytest.param("int64", np.int64, id="int64"), | ||
pytest.param("uint8", np.uint8, id="uint8"), | ||
pytest.param("uint16", np.uint16, id="uint16"), | ||
pytest.param("uint32", np.uint32, id="uint32"), | ||
pytest.param("uint64", np.uint64, id="uint64"), | ||
pytest.param("float16", np.float16, id="float16"), | ||
pytest.param("float32", np.float32, id="float32"), | ||
pytest.param("float64", np.float64, id="float64"), | ||
], | ||
) | ||
def test_to_numpy_pyarrow_array_pyarrow_dtypes_numeric(dtype, expected_dtype): | ||
""" | ||
Test the _to_numpy function with PyArrow arrays of PyArrow numeric types. | ||
""" | ||
data = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0] | ||
if dtype == "float16": # float16 needs special handling | ||
# Example from https://arrow.apache.org/docs/python/generated/pyarrow.float16.html | ||
data = np.array(data, dtype=np.float16) | ||
array = pa.array(data, type=dtype)[::2] | ||
result = _to_numpy(array) | ||
_check_result(result, expected_dtype) | ||
npt.assert_array_equal(result, array) | ||
|
||
|
||
@pytest.mark.skipif(not _HAS_PYARROW, reason="pyarrow is not installed") | ||
@pytest.mark.parametrize( | ||
("dtype", "expected_dtype"), | ||
[ | ||
pytest.param("int8", np.float64, id="int8"), | ||
pytest.param("int16", np.float64, id="int16"), | ||
pytest.param("int32", np.float64, id="int32"), | ||
pytest.param("int64", np.float64, id="int64"), | ||
pytest.param("uint8", np.float64, id="uint8"), | ||
pytest.param("uint16", np.float64, id="uint16"), | ||
pytest.param("uint32", np.float64, id="uint32"), | ||
pytest.param("uint64", np.float64, id="uint64"), | ||
pytest.param("float16", np.float16, id="float16"), | ||
pytest.param("float32", np.float32, id="float32"), | ||
pytest.param("float64", np.float64, id="float64"), | ||
], | ||
) | ||
def test_to_numpy_pyarrow_array_pyarrow_dtypes_numeric_with_na(dtype, expected_dtype): | ||
""" | ||
Test the _to_numpy function with PyArrow arrays of PyArrow numeric types and NA. | ||
""" | ||
data = [1.0, 2.0, None, 4.0, 5.0, 6.0] | ||
if dtype == "float16": # float16 needs special handling | ||
# Example from https://arrow.apache.org/docs/python/generated/pyarrow.float16.html | ||
data = np.array(data, dtype=np.float16) | ||
array = pa.array(data, type=dtype)[::2] | ||
result = _to_numpy(array) | ||
_check_result(result, expected_dtype) | ||
npt.assert_array_equal(result, array) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
""" | ||
Test Figure.shift_origin. | ||
""" | ||
|
||
import pytest | ||
from pygmt.exceptions import GMTInvalidInput | ||
from pygmt.figure import Figure | ||
|
||
|
||
@pytest.mark.mpl_image_compare | ||
def test_shift_origin(): | ||
""" | ||
Test if fig.shift_origin works. | ||
""" | ||
kwargs = {"region": [0, 3, 0, 5], "projection": "X3c/5c", "frame": 0} | ||
fig = Figure() | ||
# First call shift_origin without projection and region. | ||
# Test issue https://github.com/GenericMappingTools/pygmt/issues/514 | ||
fig.shift_origin(xshift="2c", yshift="3c") | ||
fig.basemap(**kwargs) | ||
fig.shift_origin(xshift="4c") | ||
fig.basemap(**kwargs) | ||
fig.shift_origin(yshift="6c") | ||
fig.basemap(**kwargs) | ||
fig.shift_origin(xshift="-4c", yshift="6c") | ||
fig.basemap(**kwargs) | ||
return fig | ||
|
||
|
||
def test_shift_origin_unsupported_xshift_yshift(): | ||
""" | ||
Raise an exception if X/Y/xshift/yshift is used. | ||
""" | ||
fig = Figure() | ||
fig.basemap(region=[0, 1, 0, 1], projection="X1c/1c", frame=True) | ||
with pytest.raises(GMTInvalidInput): | ||
fig.plot(x=1, y=1, style="c3c", xshift="3c") | ||
with pytest.raises(GMTInvalidInput): | ||
fig.plot(x=1, y=1, style="c3c", X="3c") | ||
with pytest.raises(GMTInvalidInput): | ||
fig.plot(x=1, y=1, style="c3c", yshift="3c") | ||
with pytest.raises(GMTInvalidInput): | ||
fig.plot(x=1, y=1, style="c3c", Y="3c") |