-
Notifications
You must be signed in to change notification settings - Fork 224
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add a gallery example for datetime inputs (#779)
Co-authored-by: Dongdong Tian <[email protected]>
- Loading branch information
1 parent
c6ae82d
commit 7181cf1
Showing
1 changed file
with
61 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
""" | ||
Datetime inputs | ||
--------------- | ||
Datetime inputs of the following types are supported in PyGMT: | ||
- :class:`numpy.datetime64` | ||
- :class:`pandas.DatetimeIndex` | ||
- :class:`xarray.DataArray`: datetimes included in a *xarray.DataArray* | ||
- raw datetime strings in `ISO format <https://en.wikipedia.org/wiki/ISO_8601>`__ (e.g. ``"YYYY-MM-DD"``, ``"YYYY-MM-DDTHH"``, and ``"YYYY-MM-DDTHH:MM:SS"``) | ||
- Python built-in :class:`datetime.datetime` and :class:`datetime.date` | ||
We can pass datetime inputs based on one of the types listed above directly to the ``x`` and ``y`` arguments | ||
of e.g. the :meth:`pygmt.Figure.plot` method: | ||
The ``region`` argument has to include the :math:`x` and :math:`y` axis limits as *str* in the form | ||
*date_min/date_max/ymin/ymax*. | ||
""" | ||
|
||
import datetime | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import pygmt | ||
import xarray as xr | ||
|
||
fig = pygmt.Figure() | ||
|
||
# create a basemap with limits of 2010-01-01 to 2020-06-01 on the x axis and | ||
# 0 to 10 on the y axis | ||
fig.basemap( | ||
projection="X15c/5c", region="2010-01-01/2020-06-01/0/10", frame=["WSen", "af"] | ||
) | ||
|
||
# numpy.datetime64 types | ||
x = np.array(["2010-06-01", "2011-06-01T12", "2012-01-01T12:34:56"], dtype="datetime64") | ||
y = [1, 2, 3] | ||
fig.plot(x, y, style="c0.4c", pen="1p", color="red3") | ||
|
||
# pandas.DatetimeIndex | ||
x = pd.date_range("2013", periods=3, freq="YS") | ||
y = [4, 5, 6] | ||
fig.plot(x, y, style="t0.4c", pen="1p", color="gold") | ||
|
||
# xarray.DataArray | ||
x = xr.DataArray(data=pd.date_range(start="2015-03", periods=3, freq="QS")) | ||
y = [7.5, 6, 4.5] | ||
fig.plot(x, y, style="s0.4c", pen="1p") | ||
|
||
# raw datetime strings | ||
x = ["2016-02-01", "2016-06-04T14", "2016-10-04T00:00:15"] | ||
y = [7, 8, 9] | ||
fig.plot(x, y, style="a0.4c", pen="1p", color="dodgerblue") | ||
|
||
# the Python built-in datetime and date | ||
x = [datetime.date(2018, 1, 1), datetime.datetime(2019, 6, 1, 20, 5, 45)] | ||
y = [6.5, 4.5] | ||
fig.plot(x, y, style="i0.4c", pen="1p", color="seagreen") | ||
|
||
fig.show() |