Skip to content

Commit

Permalink
Merge pull request #299 from GSTT-CSC/acr_slice_position
Browse files Browse the repository at this point in the history
ACR Slice Position Functionality
  • Loading branch information
Lucrezia-Cester authored Jan 24, 2023
2 parents 4014fef + fe12c98 commit 576c07c
Show file tree
Hide file tree
Showing 3 changed files with 352 additions and 0 deletions.
5 changes: 5 additions & 0 deletions .github/workflows/test_cli.yml
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,11 @@ jobs:
if: always() # will always run regardless of whether previous step fails - useful to ensure all CLI functions tested
run: |
hazen acr_ghosting tests/data/acr/Siemens --report
- name: test acr_slice_position
if: always() # will always run regardless of whether previous step fails - useful to ensure all CLI functions tested
run: |
hazen acr_slice_position tests/data/acr/Siemens --report
- name: test acr_geometric_accuracy
if: always() # will always run regardless of whether previous step fails - useful to ensure all CLI functions tested
Expand Down
262 changes: 262 additions & 0 deletions hazenlib/tasks/acr_slice_position.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,262 @@
"""
ACR Slice Position
https://www.acraccreditation.org/-/media/acraccreditation/documents/mri/largephantomguidance.pdf
Calculates the bar length difference for slices 1 and 11 of the ACR phantom.
This script calculates the bar length difference in accordance with the ACR Guidance. Line profiles are drawn
vertically through the left and right wedges. The right wedge's line profile is shifted and wrapped round before being
subtracted from the left wedge's line profile, e.g.:
Right line profile: [1, 2, 3, 4, 5]
Right line profile wrapped round by 1: [2, 3, 4, 5, 1]
This wrapping process, from hereon referred to as circular shifting, is then used for subtractions.
The shift used to produce the minimum difference between the circularly shifted right line profile and the static left
one is used to determine the bar length difference, which is twice the slice position displacement.
The results are also visualised.
Created by Yassine Azma
[email protected]
28/12/2022
"""

import sys
import traceback
import scipy
import os
import numpy as np
import skimage.morphology
import skimage.measure

from hazenlib.HazenTask import HazenTask


def find_n_peaks(data, n, height=1):
peaks = scipy.signal.find_peaks(data, height)
pk_heights = peaks[1]['peak_heights']
pk_ind = peaks[0]
highest_peaks = pk_ind[(-pk_heights).argsort()[:n]] # find n highest peaks

return np.sort(highest_peaks)


class ACRSlicePosition(HazenTask):

def __init__(self, **kwargs):
super().__init__(**kwargs)

def run(self) -> dict:
results = {}
z = []
for dcm in self.data:
z.append(dcm.ImagePositionPatient[2])

idx_sort = np.argsort(z)

for dcm in self.data:
curr_z = dcm.ImagePositionPatient[2]
if curr_z in (z[idx_sort[0]], z[idx_sort[10]]):
try:
result = self.get_slice_position(dcm)
except Exception as e:
print(f"Could not calculate the bar length difference for {self.key(dcm)} because of : {e}")
traceback.print_exc(file=sys.stdout)
continue

results[self.key(dcm)] = result

results['reports'] = {'images': self.report_files}

return results

def centroid_com(self, dcm):
# Calculate centroid of object using a centre-of-mass calculation
thresh_img = dcm > 0.25 * np.max(dcm)
open_img = skimage.morphology.area_opening(thresh_img, area_threshold=500)
bhull = skimage.morphology.convex_hull_image(open_img)
coords = np.nonzero(bhull) # row major - first array is columns

sum_x = np.sum(coords[1])
sum_y = np.sum(coords[0])
cxy = sum_x / coords[0].shape, sum_y / coords[1].shape

cxy = [cxy[0].astype(int), cxy[1].astype(int)]
return bhull, cxy

def find_wedges(self, img, mask, res):
# X COORDINATES
x_investigate_region = np.ceil(35 / res[0]).astype(int) # define width of region to test (comparable to wedges)

if np.mod(x_investigate_region, 2) == 0:
# we want an odd number to see -N to N points in the x direction
x_investigate_region = x_investigate_region + 1

w_point = np.argwhere(np.sum(mask, 0) > 0)[0].item() # westmost point of object
e_point = np.argwhere(np.sum(mask, 0) > 0)[-1].item() # eastmost point of object
n_point = np.argwhere(np.sum(mask, 1) > 0)[0].item() # northmost point of object

invest_x = []
for k in range(x_investigate_region):
y_loc = n_point + k # add n_point to ensure in image's coordinate system
t = mask[y_loc, np.arange(w_point, e_point + 1, 1)] # mask for resultant line profile
# line profile at varying y positions from west to east
line_prof_x = skimage.measure.profile_line(img, (y_loc, w_point),
(y_loc, e_point), mode='constant').flatten()

invest_x.append(t * line_prof_x) # mask unwanted values out and append

invest_x = np.array(invest_x).T # transpose array
mean_x_profile = np.mean(invest_x, 1) # mean of horizontal projections of phantom
abs_diff_x_profile = np.abs(np.diff(mean_x_profile)) # absolute first derivative of mean

x_peaks = find_n_peaks(abs_diff_x_profile, 2) # find two highest peaks
x_locs = w_point + x_peaks # x coordinates of these peaks in image coordinate system(before diff operation)

width_pts = [x_locs[0], x_locs[1]] # width of wedges
width = np.max(width_pts) - np.min(width_pts) # width

# rough midpoints of wedges
x_pts = np.round([np.min(width_pts) + 0.25 * width, np.max(width_pts) - 0.25 * width]).astype(int)

# Y COORDINATES
# define height of region to test (comparable to wedges)
y_investigate_region = int(np.ceil(20 / res[1]).item())

# supposed distance from top of phantom to end of wedges
end_point = n_point + np.round(50 / res[1]).astype(int)

if np.mod(y_investigate_region, 2) == 0:
# we want an odd number to see -N to N points in the y direction
y_investigate_region = (y_investigate_region + 1)

invest_y = []
for m in range(y_investigate_region):
x_loc = (m - np.floor(y_investigate_region / 2) + np.floor(np.mean(x_pts))).astype(int)
c = mask[np.arange(n_point, end_point + 1, 1), x_loc] # mask for resultant line profile
line_prof_y = skimage.measure.profile_line(img, (n_point, x_loc), (end_point, x_loc),
mode='constant').flatten()
invest_y.append(c * line_prof_y)

invest_y = np.array(invest_y).T # transpose array
mean_y_profile = np.mean(invest_y, 1) # mean of vertical projections of phantom
abs_diff_y_profile = np.abs(np.diff(mean_y_profile)) # absolute first derivative of mean

y_peaks = find_n_peaks(abs_diff_y_profile, 2) # find two highest peaks
y_locs = w_point + y_peaks - 1 # y coordinates of these peaks in image coordinate system(before diff operation)

if y_locs[1] - y_locs[0] < 5 / res[1]:
y = n_point + round(10 / res[1]) # if peaks too close together, use phantom geometry
else:
y = np.round(np.min(y_locs) + 0.25 * np.abs(np.diff(y_locs))) # define y coordinate

dist_to_y = np.abs(n_point - y[0]) * res[1] # distance to y from top of phantom
y_pts = np.append(y, np.round(y[0] + (47 - dist_to_y) / res[1])).astype(int) # place 2nd y point 47mm from top of phantom

return x_pts, y_pts

def get_slice_position(self, dcm):
img = dcm.pixel_array
res = dcm.PixelSpacing # In-plane resolution from metadata
mask, cxy = self.centroid_com(img)
x_pts, y_pts = self.find_wedges(img, mask, res)

line_prof_L = skimage.measure.profile_line(img, (y_pts[0], x_pts[0]), (y_pts[1], x_pts[0]),
mode='constant').flatten() # line profile through left wedge
line_prof_R = skimage.measure.profile_line(img, (y_pts[0], x_pts[1]), (y_pts[1], x_pts[1]),
mode='constant').flatten() # line profile through right wedge

interp_factor = 5
x = np.arange(1, len(line_prof_L) + 1)
new_x = np.arange(1, len(line_prof_L) + (1 / interp_factor), (1 / interp_factor))

interp_line_prof_L = scipy.interpolate.interp1d(x, line_prof_L)(new_x) # interpolate left line profile
interp_line_prof_R = scipy.interpolate.interp1d(x, line_prof_R)(new_x) # interpolate right line profile

delta = interp_line_prof_L - interp_line_prof_R # difference of line profiles
peaks = find_n_peaks(abs(delta), 2, 0.5 * np.max(abs(delta))) # find two highest peaks

if len(peaks) == 1:
peaks = [peaks[0] - 50, peaks[0] + 50] # if only one peak, set dummy range

# set multiplier for right or left shift based on sign of peak
pos = 1 if np.max(-delta[peaks[0]:peaks[1]]) < np.max(delta[peaks[0]:peaks[1]]) else -1

# take line profiles in range of interest
static_line_L = interp_line_prof_L[peaks[0]:peaks[1]]
static_line_R = interp_line_prof_R[peaks[0]:peaks[1]]

lag = np.linspace(-50, 50, 101, dtype=int) # create array of lag values
err = np.zeros(len(lag)) # initialise array of errors

for k in range(len(lag)):
temp_lag = lag[k] # set a shift value
difference = static_line_R - np.roll(static_line_L, temp_lag) # difference of L and circularly shifted R
# set wrapped values to nan
if temp_lag > 0:
difference[:temp_lag] = np.nan
else:
difference[temp_lag:] = np.nan

if np.isnan(difference).all():
err[k] = 1e10 # filler value to suppress warning when trying to calculate mean of array filled with NaN
else:
err[k] = np.nanmean(difference) # calculate mean difference ignoring nan values

temp = np.argwhere(err == np.min(err[err > 0]))[0] # find minimum non-zero error
shift = -lag[temp][0] if pos == 1 else lag[temp][0] # find shift corresponding to above error

dL = np.round(pos * np.abs(shift) * (1 / interp_factor) * res[1], 2) # calculate bar length difference

if self.report:
import matplotlib.pyplot as plt
fig = plt.figure()
plt.suptitle('Bar Length Difference = ' + str(np.round(dL, 2)) + 'mm', x=0.5, ha='center')
fig.set_size_inches(8, 8)

plt.subplot(2, 2, (1, 3))
plt.imshow(img)
plt.plot([x_pts[0], x_pts[0]], [y_pts[0], y_pts[1]], 'b')
plt.plot([x_pts[1], x_pts[1]], [y_pts[0], y_pts[1]], 'r')
plt.axis('off')
plt.tight_layout()

plt.subplot(2, 2, 2)
plt.grid()
plt.plot((1 / interp_factor) * np.linspace(1, len(interp_line_prof_L), len(interp_line_prof_L)) * res[1],
interp_line_prof_L, 'b')
plt.plot((1 / interp_factor) * np.linspace(1, len(interp_line_prof_R), len(interp_line_prof_R)) * res[1],
interp_line_prof_R, 'r')
plt.title('Original Line Profiles')
plt.xlabel('Relative Pixel Position (mm)')
plt.tight_layout()

plt.subplot(2, 2, 4)
plt.grid()
plt.plot((1 / interp_factor) * np.linspace(1, len(interp_line_prof_L), len(interp_line_prof_L)) * res[1],
interp_line_prof_L, 'b')

shift_line = np.roll(interp_line_prof_R, pos * shift)
if shift < 0 and pos == -1:
shift_line[0:np.abs(shift)] = np.nan
elif shift < 0 and pos == 1:
shift_line[pos * shift:] = np.nan
elif shift > 0 and pos == -1:
shift_line[pos * shift:] = np.nan
else:
shift_line[0:np.abs(pos) * shift] = np.nan

plt.plot((1 / interp_factor) * np.linspace(1, len(interp_line_prof_L), len(interp_line_prof_L)) * res[1],
shift_line, 'r')
plt.title('Shifted Line Profiles')
plt.xlabel('Relative Pixel Position (mm)')
plt.tight_layout()

img_path = os.path.realpath(os.path.join(self.report_path, f'{self.key(dcm)}.png'))
fig.savefig(img_path)
self.report_files.append(img_path)

return dL
85 changes: 85 additions & 0 deletions tests/test_acr_slice_position.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
import os
import unittest
import pathlib
import pydicom

from hazenlib.tasks.acr_slice_position import ACRSlicePosition
from tests import TEST_DATA_DIR


class TestACRSlicePositionSiemens(unittest.TestCase):
ACR_SLICE_POSITION_DATA = pathlib.Path(TEST_DATA_DIR / 'acr')
centre = [128, 129]
x_pts = [(123, 129), (123, 129)]
y_pts = [(40, 83), (44, 82)]
dL = -0.59, -1.56

def setUp(self):
self.acr_slice_position_task = ACRSlicePosition(data_paths=[os.path.join(TEST_DATA_DIR, 'acr')])
self.dcm_1 = pydicom.read_file(os.path.join(TEST_DATA_DIR, 'acr', 'Siemens', '0.dcm'))
self.dcm_11 = pydicom.read_file(os.path.join(TEST_DATA_DIR, 'acr', 'Siemens', '10.dcm'))

def test_object_centre(self):
assert self.acr_slice_position_task.centroid_com(self.dcm_1.pixel_array)[1] == self.centre

def test_wedge_find(self):
# IMAGE 1
res = self.dcm_1.PixelSpacing
mask, _ = self.acr_slice_position_task.centroid_com(self.dcm_1.pixel_array)
assert (self.acr_slice_position_task.find_wedges(self.dcm_1.pixel_array, mask, res)[0] ==
self.x_pts[0]).all() == True

assert (self.acr_slice_position_task.find_wedges(self.dcm_1.pixel_array, mask, res)[1] ==
self.y_pts[0]).all() == True

# IMAGE 11
res = self.dcm_11.PixelSpacing
mask, _ = self.acr_slice_position_task.centroid_com(self.dcm_11.pixel_array)
assert (self.acr_slice_position_task.find_wedges(self.dcm_11.pixel_array, mask, res)[0] ==
self.x_pts[1]).all() == True

assert (self.acr_slice_position_task.find_wedges(self.dcm_11.pixel_array, mask, res)[1] ==
self.y_pts[1]).all() == True

def test_slice_position(self):
assert round(self.acr_slice_position_task.get_slice_position(self.dcm_1), 2) == self.dL[0]
assert round(self.acr_slice_position_task.get_slice_position(self.dcm_11), 2) == self.dL[1]


class TestACRSlicePositionGE(unittest.TestCase):
ACR_SLICE_POSITION_DATA = pathlib.Path(TEST_DATA_DIR / 'acr')
centre = [253, 257]
x_pts = [(246, 257), (246, 257)]
y_pts = [(82, 163), (85, 165)]
dL = 0.3, 0.41

def setUp(self):
self.acr_slice_position_task = ACRSlicePosition(data_paths=[os.path.join(TEST_DATA_DIR, 'acr')])
self.dcm_1 = pydicom.read_file(os.path.join(TEST_DATA_DIR, 'acr', 'GE', '0.dcm'))
self.dcm_11 = pydicom.read_file(os.path.join(TEST_DATA_DIR, 'acr', 'GE', '10.dcm'))

def test_object_centre(self):
assert self.acr_slice_position_task.centroid_com(self.dcm_1.pixel_array)[1] == self.centre

def test_wedge_find(self):
# IMAGE 1
res = self.dcm_1.PixelSpacing
mask, _ = self.acr_slice_position_task.centroid_com(self.dcm_1.pixel_array)
assert (self.acr_slice_position_task.find_wedges(self.dcm_1.pixel_array, mask, res)[0] ==
self.x_pts[0]).all() == True

assert (self.acr_slice_position_task.find_wedges(self.dcm_1.pixel_array, mask, res)[1] ==
self.y_pts[0]).all() == True

# IMAGE 11
res = self.dcm_11.PixelSpacing
mask, _ = self.acr_slice_position_task.centroid_com(self.dcm_11.pixel_array)
assert (self.acr_slice_position_task.find_wedges(self.dcm_11.pixel_array, mask, res)[0] ==
self.x_pts[1]).all() == True

assert (self.acr_slice_position_task.find_wedges(self.dcm_11.pixel_array, mask, res)[1] ==
self.y_pts[1]).all() == True

def test_slice_position(self):
assert round(self.acr_slice_position_task.get_slice_position(self.dcm_1), 2) == self.dL[0]
assert round(self.acr_slice_position_task.get_slice_position(self.dcm_11), 2) == self.dL[1]

2 comments on commit 576c07c

@github-actions
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Coverage

Coverage Report
FileStmtsMissCoverMissing
hazenlib
   HazenTask.py26485%18, 32–34
   __init__.py1554472%141, 145, 155, 160, 197, 204–209, 220, 223–230, 250–252, 270–272, 291–293, 302, 307, 313, 363, 374, 380–386, 396–398, 406–407, 411
   exceptions.py21481%17–21
   relaxometry.py3179072%238–256, 631, 690–692, 746, 794–816, 834–849, 1174–1177, 1186–1189, 1201–1214, 1217–1222, 1233–1263
   shapes.py20955%13, 16, 24–29, 32
   snr_map.py111595%408, 413–415, 444
   tools.py84890%43–50, 92, 101, 117
hazenlib/tasks
   acr_geometric_accuracy.py1455562%38–72, 176–192, 206–230
   acr_ghosting.py1164264%33–53, 91–93, 123–125, 161–194
   acr_slice_position.py1575366%53–74, 152, 215–260
   acr_snr.py1375858%34–71, 96, 165–175, 208–221, 254–267
   acr_uniformity.py893264%34–54, 121–138
   ghosting.py1505166%18–32, 47, 109–110, 114, 124–125, 151–153, 170–172, 218–256
   relaxometry.py7271%10–11
   slice_position.py1182281%31, 40–41, 103–104, 130, 210, 217–234
   slice_width.py3595286%34–37, 107, 166–186, 451, 456–457, 463, 468, 530–531, 780–821
   snr.py1636660%62–67, 161–179, 194–203, 221–231, 258–268, 273–283, 314–327, 332–340, 369–382
   snr_map.py770%1–11
   spatial_resolution.py2474482%36–39, 62, 147, 206, 332–368
   uniformity.py781976%42–45, 91–92, 99, 133–147
TOTAL252366774% 

Tests Skipped Failures Errors Time
200 0 💤 0 ❌ 0 🔥 2m 21s ⏱️

@github-actions
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Coverage

Coverage Report
FileStmtsMissCoverMissing
hazenlib
   HazenTask.py25484%18, 32–34
   __init__.py1554472%141, 145, 155, 160, 197, 204–209, 220, 223–230, 250–252, 270–272, 291–293, 302, 307, 313, 363, 374, 380–386, 396–398, 406–407, 411
   exceptions.py21481%17–21
   relaxometry.py3179072%238–256, 631, 690–692, 746, 794–816, 834–849, 1174–1177, 1186–1189, 1201–1214, 1217–1222, 1233–1263
   shapes.py20955%13, 16, 24–29, 32
   snr_map.py111595%408, 413–415, 444
   tools.py84890%43–50, 92, 101, 117
hazenlib/tasks
   acr_geometric_accuracy.py1455562%38–72, 176–192, 206–230
   acr_ghosting.py1164264%33–53, 91–93, 123–125, 161–194
   acr_slice_position.py1575366%53–74, 152, 215–260
   acr_snr.py1375858%34–71, 96, 165–175, 208–221, 254–267
   acr_uniformity.py893264%34–54, 121–138
   ghosting.py1505166%18–32, 47, 109–110, 114, 124–125, 151–153, 170–172, 218–256
   relaxometry.py7271%10–11
   slice_position.py1182281%31, 40–41, 103–104, 130, 210, 217–234
   slice_width.py3565285%34–37, 107, 166–186, 451, 456–457, 463, 468, 530–531, 780–821
   snr.py1636660%62–67, 161–179, 194–203, 221–231, 258–268, 273–283, 314–327, 332–340, 369–382
   snr_map.py770%1–11
   spatial_resolution.py2464482%36–39, 62, 147, 206, 332–368
   uniformity.py781976%42–45, 91–92, 99, 133–147
TOTAL251866774% 

Tests Skipped Failures Errors Time
200 0 💤 0 ❌ 0 🔥 2m 34s ⏱️

Please sign in to comment.