Skip to content

Flawless1202/VGAE_pyG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Variational Graph Auto-encoder in Pytorch Geometric

This respository implements variational graph auto-encoder in Pytorch Geometric, adapted from the autoencoder example code in pyG. For details of the model, refer to Thomas Klpf's original paper.

Requirements

  • Python >= 3.6
  • Pytorch == 1.5
  • Pytorch Geometric == 1.5
  • scikit-learn
  • scipy

How to run

  1. Configure the arguments in config/vgae.yaml file. You can also make your own config file.

  2. Specify the config file and run the training script.

python train.py --load_config config/vgae.yaml

Result

We follow the arguments set as the original paper and the results is shown below.

Dataset AUC AP
Cora 0.903 0.911
Citeseer 0.869 0.879
Pubmed 0.948 0.948

About

An VGAE implementation using pytorch geometric.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages