-
Notifications
You must be signed in to change notification settings - Fork 417
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #6 from 920232796/master
add altclip-m18
- Loading branch information
Showing
10 changed files
with
2,629 additions
and
1 deletion.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
# Copyright © 2022 BAAI. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License") | ||
import torch | ||
from flagai.auto_model.auto_loader import AutoLoader | ||
import zeroshot_classification | ||
import json | ||
import os | ||
from torchvision.datasets import CIFAR10 | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
maxlen = 256 | ||
|
||
dataset_root = "./clip_benchmark_datasets/" | ||
dataset_name = "cifar10" | ||
|
||
auto_loader = AutoLoader( | ||
task_name="txt_img_matching", | ||
model_dir="./checkpoints/", | ||
model_name="AltCLIP-XLMR-L-m18" # Load the checkpoints from Modelhub(model.baai.ac.cn/models) | ||
) | ||
|
||
model = auto_loader.get_model() | ||
model.to(device) | ||
model.eval() | ||
tokenizer = auto_loader.get_tokenizer() | ||
transform = auto_loader.get_transform() | ||
|
||
dataset = CIFAR10(root=os.path.join(dataset_root, dataset_name), | ||
transform=transform, | ||
download=True) | ||
batch_size = 128 | ||
num_workers = 4 | ||
|
||
template = {"cifar10": [ | ||
"a photo of a {c}.", | ||
"a blurry photo of a {c}.", | ||
"a black and white photo of a {c}.", | ||
"a low contrast photo of a {c}.", | ||
"a high contrast photo of a {c}.", | ||
"a bad photo of a {c}.", | ||
"a good photo of a {c}.", | ||
"a photo of a small {c}.", | ||
"a photo of a big {c}.", | ||
"a photo of the {c}.", | ||
"a blurry photo of the {c}.", | ||
"a black and white photo of the {c}.", | ||
"a low contrast photo of the {c}.", | ||
"a high contrast photo of the {c}.", | ||
"a bad photo of the {c}.", | ||
"a good photo of the {c}.", | ||
"a photo of the small {c}.", | ||
"a photo of the big {c}." | ||
], | ||
} | ||
def evaluate(): | ||
if dataset: | ||
dataloader = torch.utils.data.DataLoader( | ||
dataset, | ||
batch_size=batch_size, | ||
shuffle=False, | ||
num_workers=num_workers, | ||
) | ||
|
||
zeroshot_templates = template["cifar10"] | ||
classnames = dataset.classes if hasattr(dataset, "classes") else None | ||
|
||
metrics = zeroshot_classification.evaluate( | ||
model, | ||
dataloader, | ||
tokenizer, | ||
classnames, | ||
zeroshot_templates, | ||
device=device, | ||
amp=True, | ||
) | ||
|
||
dump = { | ||
"dataset": dataset_name, | ||
"metrics": metrics | ||
} | ||
|
||
print(dump) | ||
with open("./result.txt", "w") as f: | ||
json.dump(dump, f) | ||
return metrics | ||
|
||
if __name__ == "__main__": | ||
evaluate() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
# Copyright © 2022 BAAI. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License") | ||
import torch | ||
from flagai.auto_model.auto_loader import AutoLoader | ||
import os | ||
from flagai.trainer import Trainer | ||
from torchvision.datasets import ( | ||
CIFAR10 | ||
) | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
dataset_root = "./clip_benchmark_datasets" | ||
dataset_name = "cifar10" | ||
|
||
batch_size = 4 | ||
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] | ||
|
||
auto_loader = AutoLoader( | ||
task_name="txt_img_matching", | ||
model_dir="./checkpoints", | ||
model_name="AltCLIP-XLMR-L-m18" # Load the checkpoints from Modelhub(model.baai.ac.cn/models) | ||
) | ||
|
||
model = auto_loader.get_model() | ||
model.to(device) | ||
model.eval() | ||
tokenizer = auto_loader.get_tokenizer() | ||
transform = auto_loader.get_transform() | ||
|
||
trainer = Trainer(env_type="pytorch", | ||
pytorch_device=device, | ||
experiment_name="clip_finetuning", | ||
batch_size=4, | ||
lr=1e-4, | ||
epochs=10, | ||
log_interval=10) | ||
|
||
dataset = CIFAR10(root=os.path.join(dataset_root, dataset_name), | ||
transform=transform, | ||
download=True) | ||
|
||
def cifar10_collate_fn(batch): | ||
# image shape is (batch, 3, 224, 224) | ||
images = torch.tensor([b[0]["pixel_values"][0] for b in batch]) | ||
# text_id shape is (batch, n) | ||
input_ids = torch.tensor([tokenizer(f"a photo of a {b[1]}", | ||
padding=True, | ||
truncation=True, | ||
max_length=77)["input_ids"] for b in batch]) | ||
|
||
attention_mask = torch.tensor([tokenizer(f"a photo of a {b[1]}", | ||
padding=True, | ||
truncation=True, | ||
max_length=77)["attention_mask"] for b in batch]) | ||
|
||
return { | ||
"pixel_values": images, | ||
"input_ids": input_ids, | ||
"attention_mask": attention_mask, | ||
} | ||
|
||
if __name__ == "__main__": | ||
trainer.train(model=model, train_dataset=dataset, collate_fn=cifar10_collate_fn) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
import torch | ||
from PIL import Image | ||
from flagai.auto_model.auto_loader import AutoLoader | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
loader = AutoLoader( | ||
task_name="txt_img_matching", | ||
model_name="AltCLIP-XLMR-L-m18", # Load the checkpoints from Modelhub(model.baai.ac.cn/models) | ||
model_dir="./checkpoints" | ||
) | ||
|
||
model = loader.get_model() | ||
tokenizer = loader.get_tokenizer() | ||
transform = loader.get_transform() | ||
|
||
model.eval() | ||
model.to(device) | ||
tokenizer = loader.get_tokenizer() | ||
|
||
def inference(): | ||
image = Image.open("./dog.jpeg") | ||
image = transform(image) | ||
image = torch.tensor(image["pixel_values"]).to(device) | ||
tokenizer_out = tokenizer(["a rat", "a dog", "a cat"], | ||
padding=True, | ||
truncation=True, | ||
max_length=77, | ||
return_tensors='pt') | ||
|
||
text = tokenizer_out["input_ids"].to(device) | ||
attention_mask = tokenizer_out["attention_mask"].to(device) | ||
with torch.no_grad(): | ||
image_features = model.get_image_features(image) | ||
text_features = model.get_text_features(text, attention_mask=attention_mask) | ||
text_probs = (image_features @ text_features.T).softmax(dim=-1) | ||
|
||
print(text_probs.cpu().numpy()[0].tolist()) | ||
|
||
if __name__=="__main__": | ||
inference() |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.