A remote door api and web application for Raspberry Pi, Odroid, Orange Pi or BeagleBoard (based on python).
- affordable access-control system
- authentication by rfid-tags or webserver-application (smarthone, tablet)
- easily extendable for additional doors. through network based system
- 3 different user-roles (user, supervisor, admin) for managing accesses and viewing logs
- different types of accesses (period, days-budget)
- additional options to adjust accesses (by given time, weekdays, differenet door-licences)
- basic statistics (total users, total accesses, accesses per weekday, accesses per door/node)
Clone the repository to your installation path with git clone https://github.com/blinzelaffe/roseguarden.git
First of all update and upgrade your raspberry pi os
sudo apt-get update
sudo apt-get upgrade
For the frontend we need nodejs to get a module called bower and a fast nodejs http-server. The http-server serve the http-request. Bower will handle all the frontend dependencies. You can install the most actual nodejs package like this.
wget http://node-arm.herokuapp.com/node_0.10.36_armhf.deb
sudo dpkg -i node_0.10.36_armhf.deb
NOTE: for the old raspberry pi the nodejs 0.10.36 is used. Some newer versions have problems with the c++ libaries. Have a look at http://weworkweplay.com/play/raspberry-pi-nodejs/ for further informations and instructions. The newest nodejs-version 4.2.1 suppose to have direct raspberry pi (ARM6/ARM7) support included. It has to be tested with RoseGuarden.
Alternative way to install LTS version of nodejs (4.2.4) for raspberry pi
for raspberry pi A,B,B+ : wget https://nodejs.org/dist/v4.2.4/node-v4.2.4-linux-armv6l.tar.xz tar -xvf node-v4.2.4-linux-armv6l.tar.xz cd node-v4.2.4-linux-armv6l sudo cp -R {bin,include,lib,share} /usr/local/
or for raspberry pi 2: wget https://nodejs.org/dist/v4.2.4/node-v4.2.4-linux-armv7l.tar.xz tar -xvf node-v4.2.4-linux-armv7l.tar.xz cd node-v4.2.4-linux-armv7l sudo cp -R {bin,include,lib,share} /usr/local/
First we install the nodejs-http-server
For this step you have to switch to the client
-directory and prompt
sudo npm install -g http-server
Now we could install bower and let bower get us the packages for the frontend (css, angularjs, smarttable, etc.).
In the same client
-directory prompt
sudo npm install -g bower
- install the bower packages with
bower install
(in theclient
-directory install)
Now the frontend is ready.
For the backend (python) we have to install dependecies, too.
First we install python-dev
and gcc
on the raspberry to establish interfaces between c++-libs and python.
sudo apt-get install python-dev
needed to compile c++-bindings with pythonsudo apt-get install gcc
needed to compile c++
The python package manager pip
will handle needed python modules for us. So we need to install pip
like this.
sudo apt-get install python-pip
At this point we will get the python packages list in the requirement.txt
file.
Switch to the server
-directory and prompt.
sudo pip install -r requirements.txt
(in theserver
-directory)
To use the rfid-reader (rc522) we have to install SPI-Py. Switch to the server/app/SPI-Py
-directory and
install the dependencies and the module.
sudo python setup.py install
install the module
Note: depending on your raspberry pi and kernel you have to re/enable the spi-module and the device tree support
with sudo raspi-config
-> 'Advanded Options'
- copy the template
config.template.ini
in theserver
- directory toconfig.ini
withcp config.template.ini config.ini
- change settings to your requirements
- initialize RoseGuarden database in the
server
- directory withsudo python roseGuarden.py create_db
- start the http-server in the
client
- directory withhttp-server -p 8000
- start the RoseGuarden-app in the
server
- directory withsudo python roseGuarden.py start
Problem: Modules (e.g. Flask) could not found while running sudo python roseGuarden.py create_db
or sudo python roseGuarden.py start
Solution:
- Go to
/your-roseguarden-directory/server/
- repeat the installation of the python modules with
sudo pip install -r requirements.txt
- sometime there are problems with a bad internet connection, check this twice before running the installation (e.g. ping to a known web-site)
Some other known issues regarding the WLan and the RFID-Reader can be found at the end of the page.
Have a look at the known issues on Github ( https://github.com/blinzelaffe/roseguarden/issues?utf8=%E2%9C%93&q=is%3Aissue+ ) and see problems already known.
Sometimes a update will help to get the latest version of RoseGuarden and some fixed bugs. See the section below for this.
For updating RoseGuarden stop its running process.
To update the software to the latest version on github, use git.
git fetch --all
git reset --hard origin/master
Now switch to the server
-directory:
If some new external pip-modules are introduces in a version you need to reload the requirements.txt
.
sudo pip install -r requirements.txt
In addition a upgrade of the migration from the database is required, use roseGuarden.py.
sudo python roseGuarden.py db upgrade
For migrations or upgrades of the database, new data have to been seeded (storing default values). So please run,
sudo python roseGuarden.py seed
To update the client switch to your client directory e.g the client
-directory:
Here we have to install/uninstall all new/old packages of bower.
bower install
(nosudo
required)
After updating please restart your roseGuarden-application again. It should be work after this with the newest version for server and client.
After testing roseGuarden on the system you can add a autostart and monitoring of the application and the http-server. We use supervisor for this purpose.
You can install supersior from distribution package
-
sudo apt-get install supervisor
-
sudo service supervisor restart
The config of supervisord is stored on your system in the following file: /etc/supervisor/supervisord.conf
.
There is a template in the repository documentation/templates&scripts/supervisord.config
.
Use the file to adapt it to your system (especially the pathes).
The hardware consists of the following electronics types mounted on a board.
- the control unit (Rapsberry Pi, Orange Pi, Beagleboard or Odroid): running the Python based app and server.
- a RFID-reader (e.g. RC552): reading and writing the tags
- a relay-module: controling the door-openers
- a dc-dc-converter: supplying the control unit with a input of e.g. 12V / 24V and a output of 5V
- a micro-usb cable of 30cm length: connect dc-dc-converter to the control unit
- some internal cable: e.g. from dc-dc converter to the relay module or to the raspberry pi
Here some photos of the assembled and mounted Roseguarden device in the early stage.
We recommend the following tested devices:
- Rapsberry Pi 1 B (found on watterot, rs online, digikey)
- KIS3R33S dc-dc converter (found on ebay from various distributoirs from about 3€ per piece)
- RC552 rfid reader, including 2 rfid-tags (found on ebay from various distributors from about 3€ per piece)
- SainSmart 2 ch. relay module or compatible (found on ebay from various distributors and producers from about 3€ per piece)
- the 3d-printed case on below
- 4 x M2 and 10 x M3 screws to mount the electronic to the case
additional for connecting and supllying the device:
- some breadboard female-female connector (found on pollin, watterot or sparkun)
- some cable with at least 3 wires @ 1A (found on pollin, reichelt, digikey or your local electronic store)
- a ethernet-patch-cable (found on pollin, reichelt, digikey or your laocal electronic store)
- or a wifi-dongle (found on pollin, reichelt, digikey or your laocal electronic store)
additional for mounting the device on walls or doors:
- suckers with 40mm diameter and M4-bolts (found on ebay from various distributors from about 7€ per 10 pieces)
- or glue tape for mounting
- or screws for mounting
The case ist modeled with the powerful open source software FreeCAD. Have a look in the hardware folder for the current stable version of the board and its case. It is designed to be 3d-printed with dimensions of 145mm x 145mm x 60mm. The design uses suckers to mount the device to windows or doors. With a few modifications you can also use screws for a more stable mounting. Be aware that the RFID-communication could only reach throw about 30mm non-metallic walls or glass (+ aboout 20mm rfid-module-to-wall distance).
Feel free to change the design to your needs. Please share your changed designs and new versions with the community (by asking for a push request).
To assemble the components, you only need some additional M2 and M3 screws to put the electronics on the board. While using other electronics than recommended, change the board modell to your needs. The positions are marked for easy assembly. The cable can put throw cable holes and routed along dedicated bolts.
The schematic show the connection between raspberry pi and the modules.
Further documentation and information on components and installation could be found on the project-wiki http://h2371910.stratoserver.net/projects/tuer-und-geraeteverwaltung-rosenguarden/wiki/Wiki (german language only, please translate via google translate or other services).
The WLAN connection breaks ofter some time
Normally the wlan connection timed out after a while. The default config of raspberry pi (wheezy) don't reconnect to disappearing networks. To fix this the following steps could enable the reconnection.
- change to /etc/ifplugd/action.d/ with
cd /etc/ifplugd/action.d/
- copy the ifupdown file to ifupdown.original (for backup) with:
sudo cp ifupdown ifupdown.original
- overwrite ifupdown with the alternative ifupdown from the wpa_supplicant-folder with:
sudo cp /etc/wpa_supplicant/ifupdown.sh ./ifupdown
- reboot with
sudo reboot
Alternativly you can tools like wicd-curses. Instructions for wicd-curses can be found in the internet.
I have problems to develop under windows
- Install the python Visual C++-Compiler from http://aka.ms/vcpython27 before installing the requirements
- user requirements_win_dev.txt instead of requirements.txt (SPI-Py is for linux only)
The rfid don't read any tag
With Kernel 3.18 and above Rasbian switch to device tree support on default. A detailed description is shown here: https://www.raspberrypi.org/forums/viewtopic.php?t=97314 This could encounter problems with the spi.
To fix the issue you have to re/enable the spi-module.
To setup this use sudo raspi-config
-> 'Advanded Options' or write the changes directly to /boot/config.txt
on your own.
For Raspbbery Pi B
dtparam=spi=on
dtoverlay=spi-bcm2708
have to been set.
For Raspberry Pi 2 (not tested, yet)
dtparam=spi=on
dtoverlay=spi-bcm2835
should be working (not tested yet)
For Raspberry Pi 2 please consider, there is be a another pin-out-connectio needed. Some instructions described here: https://www.raspberrypi.org/forums/viewtopic.php?f=37&t=106313 or a alternative way to enable SPI here http://bsd.ee/~hadara/blog/?p=1017
Mifare_RC522_RFID Raspberry Pi 2 B
MOSI ——————————> pin 19 e.g. GPIO 10
MISO ——————————> pin 21 e.g. GPIO 9
SCLK ——————————> pin 23 e.g. GPIO 11
SDA ——————————> pin 24 e.g. GPIO 8
RST ——————————> pin 22 e.g. GPIO 25
IRQ ——————————> NONE
RoseGuarden is published under the terms of the GPL v3 license. See LICENSE.