Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feature(whl): add ag_news dataset. #31

Merged
merged 14 commits into from
Apr 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions fling/dataset/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,4 +4,6 @@
from .tiny_imagenet import TinyImagenetDataset
from .mini_imagenet import MiniImagenetDataset
from .imagenet import ImagenetDataset
from .ag_news import AGNewsDataset
from .sogou_news import SogouNews
from .build_dataset import get_dataset
68 changes: 68 additions & 0 deletions fling/dataset/ag_news.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
import torch
from torch.utils.data import Dataset
from torchtext.datasets import AG_NEWS
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator

from fling.utils.registry_utils import DATASET_REGISTRY


@DATASET_REGISTRY.register('ag_news')
class AGNewsDataset(Dataset):
"""
Implementation of AG news dataset. This dataset contains over 1 million of news articles with 4 categories.
For more information, please refer to the link: http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html .
"""
vocab = None

def __init__(self, cfg: dict, train: bool):
super(AGNewsDataset, self).__init__()
self.train = train
self.cfg = cfg
split = 'train' if self.train else 'test'
self.dataset = list(AG_NEWS(cfg.data.data_path, split=split))
self.tokenizer = get_tokenizer("basic_english")
self.max_length = cfg.data.get('max_length', float('inf'))

def _yield_tokens(data_iter):
for _, text in data_iter:
dat = self.tokenizer(text)
yield dat

# Prepare vocabulary tabular.
if AGNewsDataset.vocab is None:
AGNewsDataset.vocab = build_vocab_from_iterator(
_yield_tokens(iter(self.dataset)), specials=['<unk>', '<pad>'], min_freq=5
)
AGNewsDataset.vocab.set_default_index(self.vocab["<unk>"])

real_max_len = max([len(self._process_text((self.dataset[i][1]))) for i in range(len(self.dataset))])
self.max_length = min(self.max_length, real_max_len)

print(
f'Dataset Generated. Total vocab size: {len(self.vocab)}; '
f'Max length of the input: {self.max_length}; '
f'Dataset length: {len(self.dataset)}.'
)

def _process_text(self, x):
return AGNewsDataset.vocab(self.tokenizer(x))

def _process_label(self, x):
return int(x) - 1

def __len__(self):
return len(self.dataset)

def __getitem__(self, item):
label, text = self.dataset[item]
label = self._process_label(label)
text = self._process_text(text)

if len(text) > self.max_length:
text = text[:self.max_length]
else:
text += [self.vocab['<pad>']] * (self.max_length - len(text))

assert len(text) == self.max_length
return {'input': torch.LongTensor(text), 'class_id': label}
72 changes: 72 additions & 0 deletions fling/dataset/sogou_news.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
import csv

import torch
from torch.utils.data import Dataset
from torchtext.datasets import SogouNews
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator

from fling.utils.registry_utils import DATASET_REGISTRY


@DATASET_REGISTRY.register('sogou_news')
class SogouNewsDataset(Dataset):
"""
Implementation of Sogou news dataset. The Sogou News dataset is a mixture of 2,909,551 news articles from the \
SogouCA and SogouCS news corpora, in 5 categories. For more information, please refer to the link: \
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html .
"""
vocab = None

def __init__(self, cfg: dict, train: bool):
super(SogouNewsDataset, self).__init__()
self.train = train
self.cfg = cfg
split = 'train' if self.train else 'test'
csv.field_size_limit(int(1e8))
self.dataset = list(SogouNews(cfg.data.data_path, split=split))
self.tokenizer = get_tokenizer("basic_english")
self.max_length = cfg.data.get('max_length', float('inf'))

def _yield_tokens(data_iter):
for _, text in data_iter:
dat = self.tokenizer(text)
yield dat

# Prepare vocabulary tabular.
if SogouNewsDataset.vocab is None:
SogouNewsDataset.vocab = build_vocab_from_iterator(
_yield_tokens(iter(self.dataset)), specials=['<unk>', '<pad>'], min_freq=5
)
SogouNewsDataset.vocab.set_default_index(self.vocab["<unk>"])

real_max_len = max([len(self._process_text((self.dataset[i][1]))) for i in range(len(self.dataset))])
self.max_length = min(self.max_length, real_max_len)

print(
f'Dataset Generated. Total vocab size: {len(self.vocab)}; '
f'Max length of the input: {self.max_length}; '
f'Dataset length: {len(self.dataset)}.'
)

def _process_text(self, x):
return SogouNewsDataset.vocab(self.tokenizer(x))

def _process_label(self, x):
return int(x) - 1

def __len__(self):
return len(self.dataset)

def __getitem__(self, item):
label, text = self.dataset[item]
label = self._process_label(label)
text = self._process_text(text)

if len(text) > self.max_length:
text = text[:self.max_length]
else:
text += [self.vocab['<pad>']] * (self.max_length - len(text))

assert len(text) == self.max_length
return {'input': torch.LongTensor(text), 'class_id': label}
6 changes: 1 addition & 5 deletions fling/model/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,5 @@
from .resnet import resnet4, resnet6, resnet8, resnet10, resnet18, resnet34, resnet50
from .swin_transformer import SwinTransformer
from .vit import ViT
from .language_classifier import TransformerClassifier
from .build_model import get_model

# Algorithm specific models
# FedRoD
from .fedrod_resnet import fedrod_resnet4, fedrod_resnet6, fedrod_resnet8, fedrod_resnet10, fedrod_resnet18,\
fedrod_resnet34, fedrod_resnet50
Loading