forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Fix] Update metafile with missed model checkpoints (open-mmlab#9890)
- Loading branch information
Showing
9 changed files
with
394 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
Models: | ||
- Name: mask-rcnn_r50_fpn_albu-1x_coco | ||
In Collection: Mask R-CNN | ||
Config: mask-rcnn_r50_fpn_albu-1x_coco.py | ||
Metadata: | ||
Training Memory (GB): 4.4 | ||
Epochs: 12 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
box AP: 38.0 | ||
- Task: Instance Segmentation | ||
Dataset: COCO | ||
Metrics: | ||
mask AP: 34.5 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/albu_example/mask_rcnn_r50_fpn_albu_1x_coco/mask_rcnn_r50_fpn_albu_1x_coco_20200208-ab203bcd.pth |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
Collections: | ||
- Name: BoxInst | ||
Metadata: | ||
Training Data: COCO | ||
Training Techniques: | ||
- SGD with Momentum | ||
- Weight Decay | ||
Training Resources: 8x A100 GPUs | ||
Architecture: | ||
- ResNet | ||
- FPN | ||
- CondInst | ||
Paper: | ||
URL: https://arxiv.org/abs/2012.02310 | ||
Title: 'BoxInst: High-Performance Instance Segmentation with Box Annotations' | ||
README: configs/boxinst/README.md | ||
Code: | ||
URL: https://github.com/open-mmlab/mmdetection/blob/v3.0.0rc6/mmdet/models/detectors/boxinst.py#L8 | ||
Version: v3.0.0rc6 | ||
|
||
Models: | ||
- Name: boxinst_r50_fpn_ms-90k_coco | ||
In Collection: BoxInst | ||
Config: configs/boxinst/boxinst_r50_fpn_ms-90k_coco.py | ||
Metadata: | ||
Iterations: 90000 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
box AP: 39.4 | ||
- Task: Instance Segmentation | ||
Dataset: COCO | ||
Metrics: | ||
mask AP: 30.8 | ||
Weights: https://download.openmmlab.com/mmdetection/v3.0/boxinst/boxinst_r50_fpn_ms-90k_coco/boxinst_r50_fpn_ms-90k_coco_20221228_163052-6add751a.pth | ||
|
||
- Name: boxinst_r101_fpn_ms-90k_coco | ||
In Collection: BoxInst | ||
Config: configs/boxinst/boxinst_r101_fpn_ms-90k_coco.py | ||
Metadata: | ||
Iterations: 90000 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
box AP: 41.8 | ||
- Task: Instance Segmentation | ||
Dataset: COCO | ||
Metrics: | ||
mask AP: 32.7 | ||
Weights: https://download.openmmlab.com/mmdetection/v3.0/boxinst/boxinst_r101_fpn_ms-90k_coco/boxinst_r101_fpn_ms-90k_coco_20221229_145106-facf375b.pth |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
Models: | ||
- Name: mask-rcnn_r50_fpn_sample1e-3_ms-2x_lvis-v0.5 | ||
In Collection: Mask R-CNN | ||
Config: configs/lvis/mask-rcnn_r50_fpn_sample1e-3_ms-2x_lvis-v0.5.py | ||
Metadata: | ||
Epochs: 24 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: LVIS v0.5 | ||
Metrics: | ||
box AP: 26.1 | ||
- Task: Instance Segmentation | ||
Dataset: LVIS v0.5 | ||
Metrics: | ||
mask AP: 25.9 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis-dbd06831.pth | ||
|
||
- Name: mask-rcnn_r101_fpn_sample1e-3_ms-2x_lvis-v0.5 | ||
In Collection: Mask R-CNN | ||
Config: configs/lvis/mask-rcnn_r101_fpn_sample1e-3_ms-2x_lvis-v0.5.py | ||
Metadata: | ||
Epochs: 24 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: LVIS v0.5 | ||
Metrics: | ||
box AP: 27.1 | ||
- Task: Instance Segmentation | ||
Dataset: LVIS v0.5 | ||
Metrics: | ||
mask AP: 27.0 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis-54582ee2.pth | ||
|
||
- Name: mask-rcnn_x101-32x4d_fpn_sample1e-3_ms-2x_lvis-v0.5 | ||
In Collection: Mask R-CNN | ||
Config: configs/lvis/mask-rcnn_x101-32x4d_fpn_sample1e-3_ms-2x_lvis-v0.5.py | ||
Metadata: | ||
Epochs: 24 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: LVIS v0.5 | ||
Metrics: | ||
box AP: 26.7 | ||
- Task: Instance Segmentation | ||
Dataset: LVIS v0.5 | ||
Metrics: | ||
mask AP: 26.9 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis-3cf55ea2.pth | ||
|
||
- Name: mask-rcnn_x101-64x4d_fpn_sample1e-3_ms-2x_lvis-v0.5 | ||
In Collection: Mask R-CNN | ||
Config: configs/lvis/mask-rcnn_x101-64x4d_fpn_sample1e-3_ms-2x_lvis-v0.5.py | ||
Metadata: | ||
Epochs: 24 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: LVIS v0.5 | ||
Metrics: | ||
box AP: 26.4 | ||
- Task: Instance Segmentation | ||
Dataset: LVIS v0.5 | ||
Metrics: | ||
mask AP: 26.0 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis-1c99a5ad.pth | ||
|
||
- Name: mask-rcnn_r50_fpn_sample1e-3_ms-1x_lvis-v1 | ||
In Collection: Mask R-CNN | ||
Config: configs/lvis/mask-rcnn_r50_fpn_sample1e-3_ms-1x_lvis-v1.py | ||
Metadata: | ||
Epochs: 12 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: LVIS v1 | ||
Metrics: | ||
box AP: 22.5 | ||
- Task: Instance Segmentation | ||
Dataset: LVIS v1 | ||
Metrics: | ||
mask AP: 21.7 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1-aa78ac3d.pth | ||
|
||
- Name: mask-rcnn_r101_fpn_sample1e-3_ms-1x_lvis-v1 | ||
In Collection: Mask R-CNN | ||
Config: configs/lvis/mask-rcnn_r101_fpn_sample1e-3_ms-1x_lvis-v1.py | ||
Metadata: | ||
Epochs: 12 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: LVIS v1 | ||
Metrics: | ||
box AP: 24.6 | ||
- Task: Instance Segmentation | ||
Dataset: LVIS v1 | ||
Metrics: | ||
mask AP: 23.6 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1-ec55ce32.pth | ||
|
||
- Name: mask-rcnn_x101-32x4d_fpn_sample1e-3_ms-1x_lvis-v1 | ||
In Collection: Mask R-CNN | ||
Config: configs/lvis/mask-rcnn_x101-32x4d_fpn_sample1e-3_ms-1x_lvis-v1.py | ||
Metadata: | ||
Epochs: 12 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: LVIS v1 | ||
Metrics: | ||
box AP: 26.7 | ||
- Task: Instance Segmentation | ||
Dataset: LVIS v1 | ||
Metrics: | ||
mask AP: 25.5 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1-ebbc5c81.pth | ||
|
||
- Name: mask-rcnn_x101-64x4d_fpn_sample1e-3_ms-1x_lvis-v1 | ||
In Collection: Mask R-CNN | ||
Config: configs/lvis/mask-rcnn_x101-64x4d_fpn_sample1e-3_ms-1x_lvis-v1.py | ||
Metadata: | ||
Epochs: 12 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: LVIS v1 | ||
Metrics: | ||
box AP: 27.2 | ||
- Task: Instance Segmentation | ||
Dataset: LVIS v1 | ||
Metrics: | ||
mask AP: 25.8 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1-43d9edfe.pth |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
Collections: | ||
- Name: RPN | ||
Metadata: | ||
Training Data: COCO | ||
Training Techniques: | ||
- SGD with Momentum | ||
- Weight Decay | ||
Training Resources: 8x V100 GPUs | ||
Architecture: | ||
- FPN | ||
- ResNet | ||
Paper: | ||
URL: https://arxiv.org/abs/1506.01497 | ||
Title: "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" | ||
README: configs/rpn/README.md | ||
Code: | ||
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/rpn.py#L6 | ||
Version: v2.0.0 | ||
|
||
Models: | ||
- Name: rpn_r50-caffe_fpn_1x_coco | ||
In Collection: RPN | ||
Config: configs/rpn/rpn_r50-caffe_fpn_1x_coco.py | ||
Metadata: | ||
Training Memory (GB): 3.5 | ||
Training Resources: 8x V100 GPUs | ||
Epochs: 12 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
AR@1000: 58.7 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r50_caffe_fpn_1x_coco/rpn_r50_caffe_fpn_1x_coco_20200531-5b903a37.pth | ||
|
||
- Name: rpn_r50_fpn_1x_coco | ||
In Collection: RPN | ||
Config: configs/rpn/rpn_r50_fpn_1x_coco.py | ||
Metadata: | ||
Training Memory (GB): 3.8 | ||
Training Resources: 8x V100 GPUs | ||
Epochs: 12 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
AR@1000: 58.2 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r50_fpn_1x_coco/rpn_r50_fpn_1x_coco_20200218-5525fa2e.pth | ||
|
||
- Name: rpn_r50_fpn_2x_coco | ||
In Collection: RPN | ||
Config: rpn_r50_fpn_2x_coco.py | ||
Metadata: | ||
Epochs: 24 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
AR@1000: 58.6 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r50_fpn_2x_coco/rpn_r50_fpn_2x_coco_20200131-0728c9b3.pth | ||
|
||
- Name: rpn_r101-caffe_fpn_1x_coco | ||
In Collection: RPN | ||
Config: configs/rpn/rpn_r101-caffe_fpn_1x_coco.py | ||
Metadata: | ||
Training Memory (GB): 5.4 | ||
Training Resources: 8x V100 GPUs | ||
Epochs: 12 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
AR@1000: 60.0 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r101_caffe_fpn_1x_coco/rpn_r101_caffe_fpn_1x_coco_20200531-0629a2e2.pth | ||
|
||
- Name: rpn_x101-32x4d_fpn_1x_coco | ||
In Collection: RPN | ||
Config: configs/rpn/rpn_x101-32x4d_fpn_1x_coco.py | ||
Metadata: | ||
Training Memory (GB): 7.0 | ||
Training Resources: 8x V100 GPUs | ||
Epochs: 12 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
AR@1000: 60.6 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_32x4d_fpn_1x_coco/rpn_x101_32x4d_fpn_1x_coco_20200219-b02646c6.pth | ||
|
||
- Name: rpn_x101-32x4d_fpn_2x_coco | ||
In Collection: RPN | ||
Config: configs/rpn/rpn_x101-32x4d_fpn_2x_coco.py | ||
Metadata: | ||
Training Resources: 8x V100 GPUs | ||
Epochs: 24 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
AR@1000: 61.1 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_32x4d_fpn_2x_coco/rpn_x101_32x4d_fpn_2x_coco_20200208-d22bd0bb.pth | ||
|
||
- Name: rpn_x101-64x4d_fpn_1x_coco | ||
In Collection: RPN | ||
Config: configs/rpn/rpn_x101-64x4d_fpn_1x_coco.py | ||
Metadata: | ||
Training Memory (GB): 10.1 | ||
Training Resources: 8x V100 GPUs | ||
Epochs: 12 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
AR@1000: 61.0 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_64x4d_fpn_1x_coco/rpn_x101_64x4d_fpn_1x_coco_20200208-cde6f7dd.pth | ||
|
||
- Name: rpn_x101-64x4d_fpn_2x_coco | ||
In Collection: RPN | ||
Config: configs/rpn/rpn_x101-64x4d_fpn_2x_coco.py | ||
Metadata: | ||
Training Resources: 8x V100 GPUs | ||
Epochs: 24 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
AR@1000: 61.5 | ||
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_64x4d_fpn_2x_coco/rpn_x101_64x4d_fpn_2x_coco_20200208-c65f524f.pth |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
Collections: | ||
- Name: SoftTeacher | ||
Metadata: | ||
Training Data: COCO | ||
Training Techniques: | ||
- SGD with Momentum | ||
- Weight Decay | ||
Training Resources: 8x V100 GPUs | ||
Architecture: | ||
- FPN | ||
- ResNet | ||
Paper: | ||
URL: https://arxiv.org/abs/2106.09018 | ||
Title: "End-to-End Semi-Supervised Object Detection with Soft Teacher" | ||
README: configs/soft_teacher/README.md | ||
Code: | ||
URL: https://github.com/open-mmlab/mmdetection/blob/v3.0.0rc1/mmdet/models/detectors/soft_teacher.py#L20 | ||
Version: v3.0.0rc1 |
Oops, something went wrong.