Skip to content

Commit

Permalink
[Fix] Update metafile with missed model checkpoints (open-mmlab#9890)
Browse files Browse the repository at this point in the history
  • Loading branch information
RangiLyu authored Mar 13, 2023
1 parent 40b8e14 commit c320060
Show file tree
Hide file tree
Showing 9 changed files with 394 additions and 5 deletions.
17 changes: 17 additions & 0 deletions configs/albu_example/metafile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
Models:
- Name: mask-rcnn_r50_fpn_albu-1x_coco
In Collection: Mask R-CNN
Config: mask-rcnn_r50_fpn_albu-1x_coco.py
Metadata:
Training Memory (GB): 4.4
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.0
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 34.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/albu_example/mask_rcnn_r50_fpn_albu_1x_coco/mask_rcnn_r50_fpn_albu_1x_coco_20200208-ab203bcd.pth
7 changes: 4 additions & 3 deletions configs/boxinst/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,9 +15,10 @@ of learning masks in instance segmentation, with no modification to the segmenta

## Results and Models

| Backbone | Style | MS train | Lr schd | bbox AP | mask AP | Config | Download |
| :------: | :-----: | :------: | :-----: | :-----: | :-----: | :----------------------------------------: | :----------------------: |
| R-50 | pytorch | Y | 1x | 39.4 | 30.8 | [config](./boxinst_r50_fpn_ms-90k_coco.py) | [model](<>) \| [log](<>) |
| Backbone | Style | MS train | Lr schd | bbox AP | mask AP | Config | Download |
| :------: | :-----: | :------: | :-----: | :-----: | :-----: | :-----------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| R-50 | pytorch | Y | 1x | 39.6 | 31.1 | [config](./boxinst_r50_fpn_ms-90k_coco.py) | [model](https://download.openmmlab.com/mmdetection/v3.0/boxinst/boxinst_r50_fpn_ms-90k_coco/boxinst_r50_fpn_ms-90k_coco_20221228_163052-6add751a.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/boxinst/boxinst_r50_fpn_ms-90k_coco/boxinst_r50_fpn_ms-90k_coco_20221228_163052.log.json) |
| R-101 | pytorch | Y | 1x | 41.8 | 32.7 | [config](./boxinst_r101_fpn_ms-90k_coco.py) | [model](https://download.openmmlab.com/mmdetection/v3.0/boxinst/boxinst_r101_fpn_ms-90k_coco/boxinst_r101_fpn_ms-90k_coco_20221229_145106-facf375b.pth) \|[log](https://download.openmmlab.com/mmdetection/v3.0/boxinst/boxinst_r101_fpn_ms-90k_coco/boxinst_r101_fpn_ms-90k_coco_20221229_145106.log.json) |

## Citation

Expand Down
52 changes: 52 additions & 0 deletions configs/boxinst/metafile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
Collections:
- Name: BoxInst
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x A100 GPUs
Architecture:
- ResNet
- FPN
- CondInst
Paper:
URL: https://arxiv.org/abs/2012.02310
Title: 'BoxInst: High-Performance Instance Segmentation with Box Annotations'
README: configs/boxinst/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v3.0.0rc6/mmdet/models/detectors/boxinst.py#L8
Version: v3.0.0rc6

Models:
- Name: boxinst_r50_fpn_ms-90k_coco
In Collection: BoxInst
Config: configs/boxinst/boxinst_r50_fpn_ms-90k_coco.py
Metadata:
Iterations: 90000
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 39.4
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 30.8
Weights: https://download.openmmlab.com/mmdetection/v3.0/boxinst/boxinst_r50_fpn_ms-90k_coco/boxinst_r50_fpn_ms-90k_coco_20221228_163052-6add751a.pth

- Name: boxinst_r101_fpn_ms-90k_coco
In Collection: BoxInst
Config: configs/boxinst/boxinst_r101_fpn_ms-90k_coco.py
Metadata:
Iterations: 90000
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.8
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 32.7
Weights: https://download.openmmlab.com/mmdetection/v3.0/boxinst/boxinst_r101_fpn_ms-90k_coco/boxinst_r101_fpn_ms-90k_coco_20221229_145106-facf375b.pth
13 changes: 13 additions & 0 deletions configs/centernet/metafile.yml
Original file line number Diff line number Diff line change
Expand Up @@ -44,3 +44,16 @@ Models:
Metrics:
box AP: 25.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/centernet/centernet_resnet18_140e_coco/centernet_resnet18_140e_coco_20210705_093630-bb5b3bf7.pth

- Name: centernet-update_r50-caffe_fpn_ms-1x_coco
In Collection: CenterNet
Config: configs/centernet/centernet-update_r50-caffe_fpn_ms-1x_coco.py
Metadata:
Batch Size: 16
Training Memory (GB): 3.3
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.2
128 changes: 128 additions & 0 deletions configs/lvis/metafile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
Models:
- Name: mask-rcnn_r50_fpn_sample1e-3_ms-2x_lvis-v0.5
In Collection: Mask R-CNN
Config: configs/lvis/mask-rcnn_r50_fpn_sample1e-3_ms-2x_lvis-v0.5.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v0.5
Metrics:
box AP: 26.1
- Task: Instance Segmentation
Dataset: LVIS v0.5
Metrics:
mask AP: 25.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis-dbd06831.pth

- Name: mask-rcnn_r101_fpn_sample1e-3_ms-2x_lvis-v0.5
In Collection: Mask R-CNN
Config: configs/lvis/mask-rcnn_r101_fpn_sample1e-3_ms-2x_lvis-v0.5.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v0.5
Metrics:
box AP: 27.1
- Task: Instance Segmentation
Dataset: LVIS v0.5
Metrics:
mask AP: 27.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis-54582ee2.pth

- Name: mask-rcnn_x101-32x4d_fpn_sample1e-3_ms-2x_lvis-v0.5
In Collection: Mask R-CNN
Config: configs/lvis/mask-rcnn_x101-32x4d_fpn_sample1e-3_ms-2x_lvis-v0.5.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v0.5
Metrics:
box AP: 26.7
- Task: Instance Segmentation
Dataset: LVIS v0.5
Metrics:
mask AP: 26.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis-3cf55ea2.pth

- Name: mask-rcnn_x101-64x4d_fpn_sample1e-3_ms-2x_lvis-v0.5
In Collection: Mask R-CNN
Config: configs/lvis/mask-rcnn_x101-64x4d_fpn_sample1e-3_ms-2x_lvis-v0.5.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v0.5
Metrics:
box AP: 26.4
- Task: Instance Segmentation
Dataset: LVIS v0.5
Metrics:
mask AP: 26.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis-1c99a5ad.pth

- Name: mask-rcnn_r50_fpn_sample1e-3_ms-1x_lvis-v1
In Collection: Mask R-CNN
Config: configs/lvis/mask-rcnn_r50_fpn_sample1e-3_ms-1x_lvis-v1.py
Metadata:
Epochs: 12
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 22.5
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 21.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1-aa78ac3d.pth

- Name: mask-rcnn_r101_fpn_sample1e-3_ms-1x_lvis-v1
In Collection: Mask R-CNN
Config: configs/lvis/mask-rcnn_r101_fpn_sample1e-3_ms-1x_lvis-v1.py
Metadata:
Epochs: 12
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 24.6
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 23.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1-ec55ce32.pth

- Name: mask-rcnn_x101-32x4d_fpn_sample1e-3_ms-1x_lvis-v1
In Collection: Mask R-CNN
Config: configs/lvis/mask-rcnn_x101-32x4d_fpn_sample1e-3_ms-1x_lvis-v1.py
Metadata:
Epochs: 12
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 26.7
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 25.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1-ebbc5c81.pth

- Name: mask-rcnn_x101-64x4d_fpn_sample1e-3_ms-1x_lvis-v1
In Collection: Mask R-CNN
Config: configs/lvis/mask-rcnn_x101-64x4d_fpn_sample1e-3_ms-1x_lvis-v1.py
Metadata:
Epochs: 12
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 27.2
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 25.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1-43d9edfe.pth
127 changes: 127 additions & 0 deletions configs/rpn/metafile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
Collections:
- Name: RPN
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- FPN
- ResNet
Paper:
URL: https://arxiv.org/abs/1506.01497
Title: "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks"
README: configs/rpn/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/rpn.py#L6
Version: v2.0.0

Models:
- Name: rpn_r50-caffe_fpn_1x_coco
In Collection: RPN
Config: configs/rpn/rpn_r50-caffe_fpn_1x_coco.py
Metadata:
Training Memory (GB): 3.5
Training Resources: 8x V100 GPUs
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
AR@1000: 58.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r50_caffe_fpn_1x_coco/rpn_r50_caffe_fpn_1x_coco_20200531-5b903a37.pth

- Name: rpn_r50_fpn_1x_coco
In Collection: RPN
Config: configs/rpn/rpn_r50_fpn_1x_coco.py
Metadata:
Training Memory (GB): 3.8
Training Resources: 8x V100 GPUs
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
AR@1000: 58.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r50_fpn_1x_coco/rpn_r50_fpn_1x_coco_20200218-5525fa2e.pth

- Name: rpn_r50_fpn_2x_coco
In Collection: RPN
Config: rpn_r50_fpn_2x_coco.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
AR@1000: 58.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r50_fpn_2x_coco/rpn_r50_fpn_2x_coco_20200131-0728c9b3.pth

- Name: rpn_r101-caffe_fpn_1x_coco
In Collection: RPN
Config: configs/rpn/rpn_r101-caffe_fpn_1x_coco.py
Metadata:
Training Memory (GB): 5.4
Training Resources: 8x V100 GPUs
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
AR@1000: 60.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r101_caffe_fpn_1x_coco/rpn_r101_caffe_fpn_1x_coco_20200531-0629a2e2.pth

- Name: rpn_x101-32x4d_fpn_1x_coco
In Collection: RPN
Config: configs/rpn/rpn_x101-32x4d_fpn_1x_coco.py
Metadata:
Training Memory (GB): 7.0
Training Resources: 8x V100 GPUs
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
AR@1000: 60.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_32x4d_fpn_1x_coco/rpn_x101_32x4d_fpn_1x_coco_20200219-b02646c6.pth

- Name: rpn_x101-32x4d_fpn_2x_coco
In Collection: RPN
Config: configs/rpn/rpn_x101-32x4d_fpn_2x_coco.py
Metadata:
Training Resources: 8x V100 GPUs
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
AR@1000: 61.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_32x4d_fpn_2x_coco/rpn_x101_32x4d_fpn_2x_coco_20200208-d22bd0bb.pth

- Name: rpn_x101-64x4d_fpn_1x_coco
In Collection: RPN
Config: configs/rpn/rpn_x101-64x4d_fpn_1x_coco.py
Metadata:
Training Memory (GB): 10.1
Training Resources: 8x V100 GPUs
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
AR@1000: 61.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_64x4d_fpn_1x_coco/rpn_x101_64x4d_fpn_1x_coco_20200208-cde6f7dd.pth

- Name: rpn_x101-64x4d_fpn_2x_coco
In Collection: RPN
Config: configs/rpn/rpn_x101-64x4d_fpn_2x_coco.py
Metadata:
Training Resources: 8x V100 GPUs
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
AR@1000: 61.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_64x4d_fpn_2x_coco/rpn_x101_64x4d_fpn_2x_coco_20200208-c65f524f.pth
18 changes: 18 additions & 0 deletions configs/soft_teacher/metafile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
Collections:
- Name: SoftTeacher
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- FPN
- ResNet
Paper:
URL: https://arxiv.org/abs/2106.09018
Title: "End-to-End Semi-Supervised Object Detection with Soft Teacher"
README: configs/soft_teacher/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v3.0.0rc1/mmdet/models/detectors/soft_teacher.py#L20
Version: v3.0.0rc1
Loading

0 comments on commit c320060

Please sign in to comment.