Skip to content

Commit

Permalink
Add type hints for tf models batch 1 (huggingface#25853)
Browse files Browse the repository at this point in the history
* Add type hints to `TFBlipTextModel`

* Add missing type hints to DPR family models

* Add type hints to `TFLEDModel`

* Add type hints to `TFLxmertForPreTraining`

* Add missing type hints to `TFMarianMTModel` and `TFMarianModel`

* Add missing type hints to `TFRagModel` & `TFRagTokenForGeneration`

* Make type hints annotations consistent
  • Loading branch information
nablabits authored and EduardoPach committed Nov 18, 2023
1 parent bd60b58 commit 3a6fa22
Show file tree
Hide file tree
Showing 6 changed files with 105 additions and 104 deletions.
33 changes: 17 additions & 16 deletions src/transformers/models/blip/modeling_tf_blip_text.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
TFCausalLMOutputWithCrossAttentions,
)
from ...modeling_tf_utils import (
TFModelInputType,
TFPreTrainedModel,
get_initializer,
get_tf_activation,
Expand Down Expand Up @@ -668,22 +669,22 @@ def get_extended_attention_mask(
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
is_decoder=False,
training=None,
):
input_ids: TFModelInputType | None = None,
attention_mask: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
encoder_embeds: tf.Tensor | None = None,
encoder_hidden_states: tf.Tensor | None = None,
encoder_attention_mask: tf.Tensor | None = None,
past_key_values: Tuple[Tuple[tf.Tensor]] | None = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
is_decoder: bool = False,
training: bool = False,
) -> Tuple[tf.Tensor] | TFBaseModelOutputWithPoolingAndCrossAttentions:
r"""
encoder_hidden_states (`tf.Tensor`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
Expand Down
32 changes: 16 additions & 16 deletions src/transformers/models/dpr/modeling_tf_dpr.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
import tensorflow as tf

from ...modeling_tf_outputs import TFBaseModelOutputWithPooling
from ...modeling_tf_utils import TFPreTrainedModel, get_initializer, shape_list, unpack_inputs
from ...modeling_tf_utils import TFModelInputType, TFPreTrainedModel, get_initializer, shape_list, unpack_inputs
from ...utils import (
ModelOutput,
add_start_docstrings,
Expand Down Expand Up @@ -540,15 +540,15 @@ def get_input_embeddings(self):
@replace_return_docstrings(output_type=TFDPRContextEncoderOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids=None,
input_ids: TFModelInputType | None = None,
attention_mask: tf.Tensor | None = None,
token_type_ids: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> Union[TFDPRContextEncoderOutput, Tuple[tf.Tensor, ...]]:
) -> TFDPRContextEncoderOutput | Tuple[tf.Tensor, ...]:
r"""
Return:
Expand Down Expand Up @@ -621,15 +621,15 @@ def get_input_embeddings(self):
@replace_return_docstrings(output_type=TFDPRQuestionEncoderOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids=None,
input_ids: TFModelInputType | None = None,
attention_mask: tf.Tensor | None = None,
token_type_ids: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> Union[TFDPRQuestionEncoderOutput, Tuple[tf.Tensor, ...]]:
) -> TFDPRQuestionEncoderOutput | Tuple[tf.Tensor, ...]:
r"""
Return:
Expand Down Expand Up @@ -701,14 +701,14 @@ def get_input_embeddings(self):
@replace_return_docstrings(output_type=TFDPRReaderOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids=None,
input_ids: TFModelInputType | None = None,
attention_mask: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: bool = None,
output_hidden_states: bool = None,
return_dict=None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]:
) -> TFDPRReaderOutput | Tuple[tf.Tensor, ...]:
r"""
Return:
Expand Down
52 changes: 26 additions & 26 deletions src/transformers/models/led/modeling_tf_led.py
Original file line number Diff line number Diff line change
Expand Up @@ -1571,7 +1571,7 @@ class TFLEDSeq2SeqLMOutput(ModelOutput):
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`tf.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`LedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Expand All @@ -1595,7 +1595,7 @@ class TFLEDSeq2SeqLMOutput(ModelOutput):
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tf.FloatTensor`, *optional*):
encoder_outputs (`tf.Tensor`, *optional*):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
Expand Down Expand Up @@ -2236,24 +2236,24 @@ def get_decoder(self):
)
def call(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFLEDEncoderBaseModelOutput]] = None,
global_attention_mask=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
input_ids: TFModelInputType | None = None,
attention_mask: tf.Tensor | None = None,
decoder_input_ids: tf.Tensor | None = None,
decoder_attention_mask: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
decoder_head_mask: tf.Tensor | None = None,
encoder_outputs: tf.Tensor | None = None,
global_attention_mask: tf.Tensor | None = None,
past_key_values: Tuple[Tuple[tf.Tensor]] | None = None,
inputs_embeds: tf.Tensor | None = None,
decoder_inputs_embeds: tf.Tensor | None = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
**kwargs,
):
) -> Tuple[tf.Tensor] | TFLEDSeq2SeqModelOutput:
outputs = self.led(
input_ids=input_ids,
attention_mask=attention_mask,
Expand Down Expand Up @@ -2371,18 +2371,18 @@ def call(
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
decoder_head_mask: np.ndarray | tf.Tensor | None = None,
encoder_outputs: Optional[TFLEDEncoderBaseModelOutput] = None,
encoder_outputs: TFLEDEncoderBaseModelOutput | None = None,
global_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
past_key_values: Tuple[Tuple[Union[np.ndarray, tf.Tensor]]] | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
labels: tf.Tensor | None = None,
training: bool = False,
):
) -> Tuple[tf.Tensor] | TFLEDSeq2SeqLMOutput:
"""
Returns:
Expand Down
34 changes: 17 additions & 17 deletions src/transformers/models/lxmert/modeling_tf_lxmert.py
Original file line number Diff line number Diff line change
Expand Up @@ -1251,22 +1251,22 @@ def get_prefix_bias_name(self):
@replace_return_docstrings(output_type=TFLxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids=None,
visual_feats=None,
visual_pos=None,
attention_mask=None,
visual_attention_mask=None,
token_type_ids=None,
inputs_embeds=None,
masked_lm_labels=None,
obj_labels=None,
matched_label=None,
ans=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
input_ids: TFModelInputType | None = None,
visual_feats: tf.Tensor | None = None,
visual_pos: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
visual_attention_mask: tf.Tensor | None = None,
token_type_ids: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
masked_lm_labels: tf.Tensor | None = None,
obj_labels: Dict[str, Tuple[tf.Tensor, tf.Tensor]] | None = None,
matched_label: tf.Tensor | None = None,
ans: tf.Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> Tuple[tf.Tensor] | TFLxmertForPreTrainingOutput:
r"""
masked_lm_labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
Expand All @@ -1282,7 +1282,7 @@ def call(
- 0 indicates that the sentence does not match the image,
- 1 indicates that the sentence does match the image.
ans (`Torch.Tensor` of shape `(batch_size)`, *optional*, defaults to `None`):
ans (`tf.Tensor` of shape `(batch_size)`, *optional*, defaults to `None`):
a one hot representation hof the correct answer *optional*
Returns:
Expand Down
22 changes: 11 additions & 11 deletions src/transformers/models/marian/modeling_tf_marian.py
Original file line number Diff line number Diff line change
Expand Up @@ -1187,13 +1187,13 @@ def call(
past_key_values: Tuple[Tuple[tf.Tensor]] | None = None,
inputs_embeds: tf.Tensor | None = None,
decoder_inputs_embeds: tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
**kwargs,
):
) -> Tuple[tf.Tensor] | TFSeq2SeqModelOutput:
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
Expand Down Expand Up @@ -1311,17 +1311,17 @@ def call(
head_mask: tf.Tensor | None = None,
decoder_head_mask: tf.Tensor | None = None,
cross_attn_head_mask: tf.Tensor | None = None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
encoder_outputs: TFBaseModelOutput | None = None,
past_key_values: Tuple[Tuple[tf.Tensor]] | None = None,
inputs_embeds: tf.Tensor | None = None,
decoder_inputs_embeds: tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
labels: tf.Tensor | None = None,
training: bool = False,
):
) -> Tuple[tf.Tensor] | TFSeq2SeqLMOutput:
r"""
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
Expand Down
36 changes: 18 additions & 18 deletions src/transformers/models/rag/modeling_tf_rag.py
Original file line number Diff line number Diff line change
Expand Up @@ -553,19 +553,19 @@ def call(
encoder_outputs: np.ndarray | tf.Tensor | None = None,
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
past_key_values: Tuple[Tuple[Union[np.ndarray, tf.Tensor]]] | None = None,
doc_scores: np.ndarray | tf.Tensor | None = None,
context_input_ids: np.ndarray | tf.Tensor | None = None,
context_attention_mask: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_retrieved: Optional[bool] = None,
n_docs: Optional[int] = None,
return_dict: Optional[bool] = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
output_retrieved: bool | None = None,
n_docs: int | None = None,
return_dict: bool | None = None,
training: bool = False,
**kwargs,
):
) -> TFRetrievAugLMOutput:
r"""
Returns:
Expand Down Expand Up @@ -849,22 +849,22 @@ def call(
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
encoder_outputs: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
past_key_values: Tuple[Tuple[Union[np.ndarray, tf.Tensor]]] | None = None,
doc_scores: np.ndarray | tf.Tensor | None = None,
context_input_ids: np.ndarray | tf.Tensor | None = None,
context_attention_mask: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_retrieved: Optional[bool] = None,
n_docs: Optional[int] = None,
do_marginalize: Optional[bool] = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
output_retrieved: bool | None = None,
n_docs: int | None = None,
do_marginalize: bool | None = None,
labels: np.ndarray | tf.Tensor | None = None,
reduce_loss: Optional[bool] = None,
return_dict: Optional[bool] = None,
reduce_loss: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
**kwargs, # needs kwargs for generation
):
) -> TFRetrievAugLMMarginOutput:
r"""
do_marginalize (`bool`, *optional*):
If `True`, the logits are marginalized over all documents by making use of
Expand Down

0 comments on commit 3a6fa22

Please sign in to comment.